
CAREER: Towards Identifying and Eliminating Exploitable Software Bugs
Attackers only need to find a single exploitable bug in order to install malware, bots, and viruses on a vulnerable

user’s computer. Unfortunately, bugs are plentiful. For example, the Ubuntu Linux bug management database currently
lists over 58,000 open bugs [56]. Specific widely-used programs such as Apache 2.0, Firefox 3.0, and the current Linux
2.6 Kernel have respectively 544 [53], 501 [54], and 1337 [55] open, non-trivial bugs. Closed-source and commercial
projects are likely to have similar statistics. Thus, the question is not whether an attacker can find a security-critical
bug, but which bug the attacker will find and exploit first.

The problem defenders face is determining which bugs are exploitable, how an attacker might exploit them, and
how to safely distribute patches that fix exploitable bugs to end-users. These are the primary research questions this
proposal explores. These questions are key to the long-term goal of the PI to minimize the attack window — the time
from when an exploitable bug is introduced to when the software patch is applied on the end-system.

Intellectual Merit: This research will develop new methods for finding exploitable bugs and prioritizing them.
This research will also develop methods for safely distributing patches that fix exploitable bugs, as well as develop
novel end-host protection schemes. These are well-known hard problems for which the PI will research efficient
solutions. The PI proposes the following specific tasks:

Task T1: Automatically Find and Prioritize Bugs Based Upon Their Exploitability. This research proposes to de-
velop automatic exploit generation techniques that can be used to prioritize bug reports by their exploitability,
and to find previously unknown exploitable bugs in software. The central principle is if we can automatically
construct an exploit, then so can a real attacker. Such bugs should be fixed first. For example, bugs that allow
an attacker to execute arbitrary code should be fixed before bugs that simply crash the program, and both should
be fixed before bugs that do not confer an advantage to the attacker.

Task T2: Safe Patch Distribution and Application. Simply developing a patch for a bug is insufficient; defenders
must distribute the patch safely to all vulnerable users. Preliminary work by the PI has shown attackers can
analyze a patch to reverse engineer the bug and automatically generate an exploit in as little as 5-29 seconds. This
is called automatic patch-based exploit generation (APEG). Our results imply that current patch distribution
architectures, such as Microsoft Automatic Update, can help attackers because they distribute patches over
days. This research proposes new methods for secure patch distribution, and in particular, methods for defending
against APEG. Second, the PI proposes research on client-side defenses based upon the patch. The most obvious
defense is to install the patch. Unfortunately, users shun patches out of fear the patch will break their system.
The PI will develop alternatives to patching where patches are analyzed and used to create filters that remove
exploits from the input stream, as well as research techniques for safe patch application.

Task T3: Binary Analysis Techniques. Tasks 1 and 2 require the ability to analyze binary (i.e., executable) code.
When determining the exploitability of a bug, low-level details such as the stack layout, what compiler opti-
mizations were used, and the exact run-time semantics of an instruction may all matter. In order to create safe
patch distribution architectures defenders need to understand the limits of reverse engineering and APEG. For
patch application, defenders need to be able to analyze the code that end-users receive to see if it will break their
systems. The proposed research focuses on (1) creating a reusable architecture which we will make available
in source form to other researchers, (2) performing efficient symbolic execution, and (3) performing efficient
combined static and dynamic analysis.

Broader Impact: This research will develop new theoretical models, techniques, and efficient implementations
for bug prioritization, patch distribution, and patch application. These results are applicable to the broader scope of
software development in general. The specific program analysis techniques will be of interest to related domains, such
as model checking, compilers, and formal methods. In addition to the academic broader impact, the proposed work
is of interest to the security industry and to the government, and also has applications to offensive computing. The PI
will make our tools available to other researchers. The PI has included letters of collaboration with UC Santa Barbara,
Western Michigan University, Lockheed-Martin, and Symantec.

The PI is developing a website that offers complete software security courses, including lecture notes with inte-
grated labs. This material will be made freely available. The PI is also developing a software security lab for eduction
that will provide a safe environment for students to study attacks and defenses. Finally, the PI is engaged in out-
reach activities, including an annual two-week program for developing security courses for historically Black and
Hispanic-serving universities [153].



CAREER: Towards Identifying and Eliminating Exploitable Software Bugs

1 Introduction
Buggy programs are one of the leading causes of hacked computers. While trojans, viruses, worms, and distributed
denial of service attacks are all currently considered some of the most serious threats to computers and networks [7],
all typically require that the attacker first exploit a buggy program in order to break into computers. The most direct
way, therefore, to make computers more secure against trojans, viruses, and similar problems is to fix bugs before
attackers can exploit them.

Unfortunately, bugs are plentiful. For example, the Ubuntu Linux bug management database currently lists over
58,000 open bugs [56]. Specific widely-used programs such as Apache 2.0, Firefox 3.0, and the current Linux 2.6
Kernel have respectively 544 [53], 501 [54], and 1337 [55] open, non-trivial bugs. Closed-source projects are likely
to have similar statistics. Those are just the bugs we know about; there is also a persistent threat of zero-day exploits
where attackers discover and craft an attack for previously unknown bugs. Thus, the question is not whether an attacker
can find a security-critical bug, but which bug the attacker will find and exploit first.

Therefore, we need techniques that find bugs and prioritize bugs by their exploitability. Bugs that allow an attacker
to execute arbitrary code should be fixed before bugs that simply crash the program, and both should be fixed before
bugs that do not confer an advantage to the attacker. Such techniques will likely always be useful, as we do not
yet know how to reliably write bug-free programs. More simply: since we cannot write secure software from the
beginning, we should at least guarantee that security will improve as the software evolves.

My central research goal is to develop methods for minimizing the attack window — the time from when an
exploitable bug is introduced to when the software patch is applied on the end-system. In this proposal, we identify
several key components that significantly contribute to this vision.

Proposal Overview. We set out a research agenda for developing techniques, attack models, and theoretical founda-
tions for minimizing the attack window. We look at the entire window, from when a bug is discovered to when a user
eventually applies the patch. The core activities in our proposed research are: (1) identify and prioritize bugs by their
exploitability such that they can be fixed first, and (2) develop techniques for distributing and safely managing patches
for exploitable bugs. Our research involves collaborations with Lockheed Martin, Symantec, Western Michigan
University, and UC Santa Barbara.

Our research is motivated by several deceptively simple to state yet difficult to answer questions. Out of the 58,000
open Ubuntu bugs, which should be fixed first? Which bugs are exploitable? Can an exploit execute arbitrary code,
steal information, or only crash the program? Can we find previously unknown bugs? How do we safely distribute the
patch to all users? How can we get users to install the patch? Can we offer protection even if users do not install a
patch immediately? In essence, how do we minimize the attack window?

Challenges. There are three central challenges to minimizing the attack window:
A. Source code analysis alone is insufficient and inadequate. Source code analysis reports errors with respect

to the abstractions in the source language. A source code error, however, does not describe how the bug may be
exploited as these semantics fall outside the scope of typical source languages. Further, there may be many different
classes of exploits, e.g., arbitrary code execution vs. private information theft, that are possible. Determining which
exploit classes are possible often depends upon details of the binary (executable) code, such as the exact heap layout,
the stack layout, compile-time optimizations that may have been performed, and potentially even timing behavior of
instructions. Further, bugs in the source language may not correspond to exploitable bugs in the compiled code (i.e.,
false positives), and may miss exploitable bugs in the compiled code (i.e., false negatives). We give three examples
in Figure 1, which we also use throughout this proposal to illustrate ideas. Note that we do not restrict ourselves to
problems in type-unsafe languages; it is possible to write programs that have exploitable bugs in any language.

1. Exploit classes. Figure 1a shows a program assumed to be written in C that is vulnerable to an integer overflow.
This example is motivated by a similar bug in Internet Explorer (IE) 6 [139]. We assume i is a 32-bit integer,
and therefore all arithmetic is performed modulo 232. On line 5, the programmer allocates s bytes of memory,
and then copies i bytes of data into it on line 6. An integer overflow can occur on lines 3 and 4 when i ≥ 232−3,

1



7. call func at fptr

1. read i

2. if i%2==0
F T

3. s:= i + 3

5. ptr:= realloc(ptr, s)

6. strncpy(ptr, string, i)

4. s := i + 2

(a)

fptr

Memory
Addr 0

Stack

Heap

*ptr

(function ptr)

(b)

// Wrong,
// but not exploitable.
1. char buf[5]
2. strncpy(buf, input, 16)

(c)

1. read(password)
2. ok = auth(passwd)
// Compiler may think 3 is
// dead code and remove it
3. zero-memory(passwd)
4. if ok ...

(d)

Figure 1: (a) is an integer overflow bug, with assumed memory layout shown in (b). (c) is not an exploitable bug. (d)
is a compiler-induced bug that cannot be found via source code analysis.

resulting in s < i. While source code analysis can find this bug, it cannot show how it may be exploited. In
Figure 1b, we show the memory layout of the program. In the simplest case an attacker will write outside the
memory allocated to ptr such that the program crashes. In the worst case an attacker can overwrite the function
pointer (fptr) with the address of code of their choosing, which will then be executed by line 7. In order to
demonstrate that both cases are possible, we must analyze the binary (executable) code.

2. False positives. Bug-finding tools often empirically have false positive rates from 30-100% due to imprecision
in the analysis itself [62, 66, 93, 158]. For example, one of the bug reports in Engler et al. [62] found 83 real
bugs, but also reported an additional 260 false positives [62]. In addition, source-level bugs may not correspond
to any exploitable condition. Figure 1c shows a C program that is buggy at the source level, but is not exploitable
on many modern systems. Compilers such as gcc 3.3 for x86 will align memory accesses, which has the effect
of allocating 16 bytes for buf, not the requested 5. Therefore the strncpy procedure, which copies 16 bytes
of input into buf, is incorrect (and should be fixed eventually), but is not exploitable.

3. False negatives. Source code analysis may miss compiler-induced security-critical bugs [44, 81], object-reuse
bugs [4, 86], code that uses implementation-specific aspects of the programming language (e.g.,[64, 151]), and
bugs dependent upon the timing characteristics of hardware (e.g., [19, 91]). For example, Figure 1d shows an
authentication routine where the programmer zeroes out the password from system memory in order to limit the
lifetime in main memory, which is used to mitigate a variety of attacks [4, 40, 76, 81, 86]. Unfortunately, many
modern compilers will optimize away the code on line 3 since the zeroed passwd is never subsequently used
(thus is considered dead code).

B. Everyone should be able to audit the code they run for security-critical bugs. There is no doubt that source code
analysis is a powerful tool for finding security-critical bugs. Nonetheless, the lack of access to source code should not
impair a user’s ability to audit the code they run on their own computers for exploitable bugs. Further, we observe that
most current attackers typically do not have access to source code, yet are effective at finding and exploiting security-
critical bugs. We want to understand both the limitations and possible advantages of a binary-only approach in order
to accurately model and replicate the capabilities of attackers.

C. Patch creation alone is insufficient. We must consider all the steps necessary to get patches installed on vul-
nerable systems, including patch distribution and patch application. The PI showed that attackers can use patches to
automatically reverse engineer the bug that is fixed and automatically generate an exploit [28]. After generating an
exploit from a patch, attackers can then launch a delayed patch attack against all the users who have not yet received or
applied the patch. We generated an exploit in as little as 5-30 seconds (see Section 3 for details). Our results imply
that attackers should be considered armed with an exploit seconds after the patch is public. Therefore, current patch
distribution architectures, such as Microsoft Windows Update, are insecure since most users will not have downloaded
a patch within the time-frame an attacker could automatically generate an exploit and attack their system.
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1.1 Overview of Proposed Work and Technical Contributions
Our proposed research and tasks consist of two underlying thrusts. First, we use binary program analysis in techniques
that minimize the attack window. Second, we propose new program analysis directions for analyzing and formally
reasoning about binary code. These two thrusts are synergistic: improvements in binary analysis allow us to get better
results for our applications, and our applications guide the creation of successful and useful program analysis (as well
as serve as a metric of success). The specific tasks are:

Task T1: Automatically Find and Prioritize Bugs Based Upon Their Exploitability. We first investigate the
capabilities of an attacker. First, given a list of bugs, can we (a) automatically generate exploits in order to prove a
bug is exploitable, and (b) determine the different classes of exploits that are possible (e.g., steal information, execute
arbitrary code, etc.). If we can automatically construct an exploit, then so can a real attacker. Such bugs should be
fixed first. For example, we would like to show which of the 58,000 Ubuntu bugs can be exploited, and automatically
generate representative exploits.

Second, we explore finding novel bugs using binary analysis. For example, can we find typical bugs such as the
integer overflow in Figure 1a? Can we find bugs that are not typically found by source code analysis, like Figure 1d?
The overall contribution of this task is to develop foundations for determining the exploitability of a bug, as well as
specific techniques that are of interest to industry, e.g., for bug management and offensive computing.

Task T2: Safe Patch Distribution and Application. The main contribution of Task 2 is to minimize the attack
window once a patch has been developed. First, we will research the requirements and solutions for a secure patch
distribution architecture. The main goal is to prevent patches from helping attackers. Note this problem is (perhaps
unintuitively) non-trivial. For example, three possible solutions are to use obfuscation, use a fast patch distribution
architecture such as P2P, and use encryption. Our preliminary research indicates that naive implementations of these
approaches have limitations (see Section 4). We propose new directions for a realistic and secure patch distribution
architecture.

Second, we propose research on client-side defenses based upon the patch. The most obvious defense is to install
the patch. Unfortunately, users shun patches out of fear the patch will break their system. A vast number of major
security incidents such as Conficker [149], Code Red [38], Blaster [148], and Slammer [107] exploited bugs for which
there was already a patch available that users simply did not install. We will develop alternatives to patching where
patches are analyzed and used to create filters that remove exploits from the input stream. In the long term, we will
also research techniques for safe patch application.

Task T3: Develop Efficient Binary Analysis Techniques. Our tasks require that we be able to faithfully reason
about binary code. The PI has previously developed an initial prototype binary analysis toolkit called Vine [17].
Guided by lessons learned by our first-generation work, we will build the next-generation binary analysis platform
(BAP). There is a widespread need for such binary analysis tools in the public, private, and research sectors, as
indicated in part by our 5 letters of collaboration. We will make the BAP source code available to other researchers.

Two specific binary analyses techniques we will develop for this project are efficient symbolic execution and com-
bined static and dynamic analysis. These techniques will improve the efficiency of our core approaches for Tasks T1
and T2. Previously, the PI developed an efficient backward analysis (weakest preconditions) for binary code [30].
However, there is significant interest in techniques that work in the forward direction (forward symbolic execution),
e.g., [13, 22, 33, 35, 36, 45, 46, 48, 73–75, 90, 94, 109, 140]. Unfortunately, these forward techniques are exponen-
tially more expensive than the backwards techniques. We have developed an algorithm and proof of correctness for
the forward-style direction that achieves the better theoretic guarantees offered by our backward analysis. We will
implement the algorithm in BAP and determine if the theoretic guarantees translate into real-world benefits for our
applications and those that are using the forward-style analysis. Second, we will develop and implement extensions to
BAP for performing a combination of static and dynamic analysis.

2 PI’s Prior Research Accomplishments
The proposed project integrates research from software security, program analysis, applied cryptography, and net-
work security. The PI has extensive knowledge and research experience in these areas, and has made several key
contributions. Three of the relevant papers were recognized as conference “Best Papers” [18, 20, 26].

3



Software Security and Program Analysis. Software security and program analysis are important for finding
bugs and prioritizing them (Task 1), designing analysis-resistant patch distribution schemes (Task 2), and efficient
binary analysis (Task 3). For example, the work on efficient forward symbolic execution in Task 3 builds upon the PI’s
expertise in developing efficient weakest preconditions for unstructured code [30], the initial algorithms for prioritizing
bugs for Task 1 will build upon the PI’s work in [28], and the PI’s experience analyzing malicious code [22, 23] is
invaluable in designing analysis-resistant patch-distribution architectures (Task 2).

The PI’s PhD thesis was on “The Analysis and Defense of Vulnerabilities in Binary Code” [17]. In the thesis,
the PI proposed novel techniques for (1) automatically generating filters for an intrusion detection system by per-
forming program analysis of the vulnerability [26, 27, 30, 120], (2) reverse engineering a software patch to develop
an exploit, which we call automatic patch-based exploit generation (APEG) [28], and (3) efficient binary analysis
and efficient algorithms for computing the weakest precondition on unstructured code, which reduced the time and
resulting verification conditional size from exponential to quadratic [30]. The work on filter generation builds the first
formal foundation for arguing about filter accuracy (i.e., how well it filters exploits while not filtering safe inputs). The
work on filter generation [26, 27, 30] has been used by Symantec to improve their desktop product called Symantec
360 [16], and has been subsequently licensed to Ensighta, Inc., and is used in a joint contract with Reservoir Labs.

As part of his thesis, the PI built Vine, a prototype static binary analysis infrastructure. Vine is the static analysis
component of the BitBlaze project [3]. The PI has used Vine with other software security research such as automatically
finding protocol implementation bugs and inconsistencies [20], and automatically reverse engineering and dissecting
malicious binaries (malware) [22, 23]. The PI has also used Vine for program analysis research, such as a new alias
analysis for binary code [25]. Vine is currently used by about a dozen different research projects at universities such
as UC Berkeley, the University of Pittsburgh, UC Santa Barbara, as well as at companies such as Lockheed-Martin,
Symantec, and Ensighta.

The PI also has made novel contributions in source code analysis, including automatically partitioning programs
for security [29] and automatically protecting programs against integer-based vulnerabilities [21].

Applied Cryptography. At least two aspects of this project benefit from the PI’s experience in applied cryptog-
raphy: a) finding side-channel bugs that allow attackers to break cryptography (see Task 1.2), and b) secure patch
distribution (Task 2). The PI has developed the first successful remote timing attack against RSA as implemented in
real software. In particular, the PI showed that one could break a 1024-bit RSA key in an OpenSSL-enabled web-
server in about 2 hours across the network [18, 19]. Major RSA implementations cite the PI’s work as the reason they
now adopt defenses (e.g., [79, 122, 154]).

Network Security. The PI has made contributions in the areas of network worm analysis [24], network-based
defenses against fast spreading attacks [117, 152], network protocol analysis [14, 116], and secure network deploy-
ment [96, 136]. The PI’s work in worm modeling [24] is related to the problem of efficient patch distribution (Task 2).
The expertise in protocol analysis [14, 116] is important for designing secure patch distribution protocols. One of the
PI’s work in network protocol analysis [14] is patent-pending in collaboration with Microsoft. The PI has proposed us-
ing network graph analysis to optimize and secure virtual machine deployment, configuration, and migration [96, 136].
The PI’s work on network-wide deployment of virtual appliances was granted a patent in May, 2008 [96]. The patent
has been licensed to Moka5, Inc. and is an integral part of their business.

3 Task T1: Automatically Finding and Prioritizing Bugs Based On Their
Exploitability

Buggy software is inevitable. All bugs, however, are not equal. Bugs that allow attackers to steal private information,
cause denial of service, and hijack control of a user’s computer should be considered more critical than bugs that do
not. How do we automatically tell which bugs are likely to be exploited from those that are not? Can users without
access to the source code audit their code for exploitable bugs? In this task, we describe our research agenda for
prioritizing known bugs, which we will extend in the latter part of this task to finding novel exploitable bugs.
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Specific Exploit ClassAll inputs All Exploits

(e.g., Arbitrary Code Execution)

Figure 2: We view an exploit class as a subset of all exploits,
which is a subset of the program input domain.

3.1 Task T1.1 (Years 1-3): Prioritizing a List of Bug Reports
Problem Description. Informally, a program’s input domain can be partitioned into the set of safe inputs for which
the program operates as intended, and the set of exploits. Within the set of exploits there are particular exploit classes,
such as crashing the program, executing arbitrary code, and information theft. Figure 2 depicts this intuition. For
example, in Figure 1a, the input domain is 32-bit integers, the set of all exploits are the inputs i = {232 − 3, 232 −
2, 232 − 1} and all possible inputs for string. The set of exploits that execute arbitrary code are the same except
string must overwrite the function pointer fptr with the address of the code to execute.

Our goal is to prioritize bug reports by their exploitability. Specifically, for each bug report we want to determine:

1. Whether the bug is exploitable. In our setting, we take a (logically) sound approach: if we say a bug is ex-
ploitable, it really is exploitable. The flip side of soundness is completeness, which in our case would mean that
we would find all bugs which are exploitable in a list of bugs. Unfortunately there is no algorithm that is both
sound and complete for determining the exploitability of (important classes of) security-critical bugs [80, 97].
Our soundness choice means we will not be able to always produce an exploit when one exists. This limitation
is outweighed by the advantage that we will never be fooled by a spurious bug reports, and therefore we will
never misdirect attention to an unexploitable bug. The main technical challenge is to show that the buggy line(s)
of code are indeed reachable, and generate an example input that causes an unsafe execution. Note this question
is closely related to model checking, automatic test case generation, and similar fields.

2. Specific classes of possible exploits. There can be many different kinds of exploits for a single bug. For
example, security professionals typically differentiate between crashing the program and permitting arbitrary
code execution; the latter being much more serious than the former. More formally, an exploit class is defined
by a predicate on the space of possible bad executions. Central challenges and questions in this problem include
(a) what are the relevant exploit classes? (b) what environmental factors, e.g., program configuration, affect the
possible set of exploits and how can we model them?

3. A witness exploit for each exploit class. A witness exploit acts as a proof of soundness: if the witness does
indeed exploit the program, the bug is real. Witness exploits are not just for show: witnesses help programmers
write patches by giving them a specific instance that they can use to debug. Research questions include what
kind of witness exploits can we generate? How efficiently can we generate them?

Preliminary Work. The PI’s PhD thesis established preliminary techniques for automatically generating exploits
once a patch has become available. This work is an initial step in developing the theory and practice of automated
exploit generation in general. Note that our preliminary work did not automatically prioritize bugs or automatically
determine the types of exploits possible.

In our preliminary work we focused on input validation bugs, which are considered the most dangerous program-
ming error by computer security experts [132]. We say a bug is an input validation bug if exploits are detectable by
an execution monitor [17, 138]. Most typical bugs fall under this definition, e.g., stack overflows, heap overflows,
leaking private information, etc. Inputs where the monitor would abort the program are considered exploits, e.g., the
“All Exploits” subset of Figure 2. Note that this definition does not explicitly distinguish between exploit classes, e.g.,
an exploit that crashes Figure 1a is considered equivalent to one that allows arbitrary code execution; we handle this
case below.

The patch-based exploit generation problem is: given a buggy programB and a patched version of the program P ,
generate an exploit for the potentially unknown vulnerability present in B but fixed in P . The PI was the first to show
automatic patch-based exploit generation is possible against input validation bugs. The intuition was that patches for
such bugs typically introduce new checks that weed out exploits. The new checks in P reveal (a) where the bug is in
the code, and (b) what conditions trigger the bug. For example, one fix to the integer overflow in Figure 1a is to add
a new check before line 5: if s < i goto error else goto 5. Previous approaches to exploit generation
could automatically find such added checks, but could not automatically generate inputs that fail the new check.
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Our approach to automatic patch-based exploit generation (APEG) consists of four steps:

1. Find the new checks added to P by differencing the two programs. There are many off-the-shelf utilities to
perform syntactic differences at the binary (e.g., [60, 135]) and source level (e.g., the standard Linux diff
command). Diffing would return the new checks, e.g., if s < i goto error else goto 5.

2. Generate an input that executes the new code path introduced by the check. In the example, we would generate
an input that executes line A and fails the check. We calculated the weakest precondition on the input domain
to fail the new check. The result is a formula that is true for all inputs that would fail the check and execute the
new branch in P :

((i%2) == 0⇒ (i + 2%232) ≤ i) ∧ ((i%2) 6= 0⇒ (i + 3%232) ≤ i) (1)

3. Solve the formula, e.g., 232 − 2 is one satisfying answer. The satisfying answer is a candidate exploit.
4. Verify the candidate exploit x is a real exploit by running B(x). We assume we are given a run-time monitor

that can verify that execution is exploited (e.g., stack-protection aborts the program).

We tested our approach with 12 Windows vulnerabilities that have been patched. APEG succeeded in 5 cases. The
fastest end-to-end time for generating an exploit was 29 seconds when we performed step (1); time was reduced to 5
seconds if the diff was given to us. The longest it took to generate an initial proof-of-concept exploit was 456 seconds.
Thus, we conclude automatic patch-based exploit generation is possible.

Proposed Work and Approach. Our preliminary work demonstrates that automatic exploit generation is possible.
It does not show that we can automatically use it to prioritize bugs, and automatically generate exploits in different
classes. At a high-level, our proposed work consists of the following steps that build upon our preliminary work: (1)
formalize the bug report as a predicate on the program state space, (2) generate a formula that captures the conditions
to reach the buggy line of code and solve the formula (e.g., using a decision procedure) to determine if the bug is
exploitable at all (this formula describes all exploits in Figure 2), (3) refine the formula to specific exploit classes, and
solve again for specific exploits. Steps (1) and (3) are new in the overall approach, which we discuss at more length
below. We discuss efficiency improvements to step (2) in Task 3. We also discuss challenges that our preliminary
APEG work flushed out, and the proposed research directions.

Step 1: Precise Bug Reports. Previously, we were provided with a tight specification of the bug via the patch.
Bug reports, however, typically do not state what is wrong with such precision. For example, a bug report may simply
state that lines 3 and 4 of Figure 1a are buggy, but not tell us why. How big of a limitation is it when the bug report
is imprecise? How much imprecision can we tolerate? Our current approach focuses on integrating our system with
open-source bug finding utilities such that a specification of the safety property thought to be violated is produced along
with the bug report. In the future, we expect that we can often infer a precise bug specification from an imprecise bug
report. For example, in Figure 1a we can infer that since the line is an integer operation, overflow will occur when
s ≤ i.

Step 3: Generating Specific Exploits. The main intuition behind generating specific exploits in step 5 is that such
classes are refinements on the formula. For example, the safety property for Figure 1a says that overflow should not
occur. The class of exploits that lead to arbitrary code execution can be specified as overflow should not occur and
fptr should be overwritten with a value that points to the code to execute.

We have successfully manually tested out adding such refinements to the predicate in [28]. The goal is to com-
pletely automate this step. Our plan is to include refinement predicates as template code which can be checked after
an initial proof-of-concept is generated. For example, we could refine the formula to include logic that says “the input
should overwrite the return address with a value that will execute code x”, where x is the location of the known stored
return address for buffer overflows.

In the long term, we would like to explore both building a large library of such templates, as well as explore
methods for automatically generating them. We also want to explore techniques for narrowing down the set of specific
exploit classes possible without an explicit call to the decision procedure, since that step is typically the most expensive.

Challenge: Can we better reason about program loops? Our preliminary efforts did not attempt to reason about
loops. We simply unrolled them a fixed number of times. Although unrolling loops is common (e.g., in bounded model
checking [12]), it prevented us from automatically generating exploits when one was possible in some cases. We have
begun to implement structural analysis, induction variable analysis, and other typical compiler analysis [5, 110] to
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find common loop patterns and bounds. We have also worked with U. Pittsburgh researchers for developing initial
loop-driven analysis [167], and plan to investigate more advanced template-driven analysis [78] and loop-extended
symbolic execution [137].

Challenge: can we create exploits for loop-dependent bugs? More concretely, our previous work did not work
well when exploits are loop-dependent. Unfortunately, there are a large class of bugs and exploits that depend upon
loops, with typical strcpy and similar out-of-bounds writes being at the top of the list. For example, the typical
buffer overflow in C is:

void copy(char *dst, char *src) while(*src != NULL) *dst = *src; src++; dst++;

The strcpy library function, for instances, is implemented as above on many Linux systems. This code is exploitable
when the string length pointed to by src is longer than dst. The loop analysis discussed above will allow us to better
handle these sorts of bugs. The longer-term questions we look to address with experiments include: Which loops can
we easily reason about in order to generate exploits? Are there other heuristics that work well? Is there a better way
to reason about strings and string manipulation loops?

Challenge: Better Automation and Distributed Implementation. Our initial work on APEG had three separate
components: differencing, candidate exploit generation, and exploit verification. We did not fully automate the inter-
actions between these components. Adding automation is simply an engineering challenge, thus was omitted during
our initial preliminary research. Nonetheless, we need complete automation in order to work in the proposed setting
where we want to prioritize thousands of bugs. Further, our implementation did not take advantage of the fact that
many operations could be parallelized or distributed.

Challenge: Larger Classes of Bugs. Initially we will continue to focus on input validation bugs. As the project
matures, we will expand our scope to look at other classes of bugs. In particular, we would like to look at exploit
generation for the larger class of safety properties (not just those enforceable by an execution monitor [138]), time-of-
use to time-of-check bugs, cryptographic timing attacks, and others [86, 88].

Evaluation Metric. Our research has a built-in evaluation metric: the percentage of exploitable bugs for which we
can automatically generate an exploit. Our research plan, therefore, includes testing against known exploitable bug
data sets. Our collaborations with Lockheed-Martin and Symantec will help secure such data sets. We also plan on
testing our techniques on lists of bugs which have potentially unknown exploitable bugs, e.g., the Ubuntu bug database.

3.2 Task T1.2 (Years 3-5): Finding New Exploitable Bugs
Problem Overview and Definition. In Task T1.1, we assume that bug-finding is done for us, e.g., via a bug-finding
tool. In this task we will investigate two directions for auditing code for new bugs. First, we propose to develop
static analysis tools and techniques for finding bugs in binary code. Second, we propose a combination of source and
binary level analysis to find bugs that cannot easily be detected at either level alone. Task 1.1 and 1.2 together yield an
end-to-end approach for finding and prioritizing exploitable bugs.

Preliminary Work. The PI has developed preliminary methods for finding bugs and inconsistencies in network pro-
tocol implementations based upon binary code analysis [20]. In this problem we are given two binary implementations
P1 and P2 of the same network protocol specification, e.g., two different web-servers that implement HTTP. Given
the same configuration, we say P1 and P2 deviate on input i if P1(i) 6= P2(i). Deviations are important to security
because they indicate possible bugs, and they also allow an attacker to identify specific protocol implementations.
Automatically finding deviations, however, is challenging because we would expect that P1(i) = P2(i) for most i, as
both implement the same protocol. The PI developed an algorithm for automatically finding such deviations by: (1)
symbolically executing P1 and P2 on a common input i to produce formulas f1 and f2, respectively, and (2) creating
a candidate deviation by solving for x such that f1(x) 6= f2(x), and (3) verifying the candidate deviation is a real
deviation. The main idea is in step (2). If π1(i), π2(i) are the code paths executed by P1(i), P2(i) respectively, then
candidate deviations are x’s such that π1(x) = π1(i), but π2(x) 6= π2(i).

We found several deviations in NTP and HTTP implementations. For example, Apache (P1) and Mini-web (P2)
both implement HTTP. We chose i to be GET /index.html. Apache and Mini-web returned the same web-page.
Our techniques then generated the deviation GET .index.html in about 35 seconds. Tests confirmed that Apache
will correctly return a “file not found” error when the page does not exist, while Mini-web returns /index.html.
The reason was Mini-web always assumes the first character of a URI is “/” for performance reasons.
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Proposed Work and Approach. Our preliminary work developed techniques that take a dynamic software model-
checking approach. Such techniques are fairly heavyweight. Static analysis, however, is a complementary lightweight
approach that can also find a wide variety of bugs [63].

Can we find a comparable number of bugs at the binary level as at the source code level using similar techniques?
We will design and adapt bug-finding techniques typically used at the source level to answer this question, which will
(a) give security auditors another tool for analyzing the security implications of software, and (b) help us understand
to what extent attackers are limited by only having access to binary code.

The first analysis we plan on implementing is static taint analysis, which looks for unsafe uses of user input [66–
68]. Static taint analysis is promising for two reasons. First, many exploitable bugs we have seen could potentially be
detected with a taint-style analysis. For example, a significant number of the 30 web-browser bugs in [2] are amenable
to such analysis. This concurs with previous work using taint analysis on source code (e.g., [67, 85]). Second, dynamic
taint analysis has previously proven effective at the binary level,e.g., [121, 147, 164]. Dynamic analysis, however, is
limited to a single path; a static approach could cover many paths. We also have preliminary results for finding known
buggy code that is reused in new software components, similar to [69, 101]. We will continue to implement new
analyses that are informed by source-level bug finding techniques to explore how well they work at the binary level.

Can we find exploitable bugs that are not traditionally found with source code alone? We are particularly interested
in compiler-induced bugs, such as in Figure 1d. One method for doing this is to check for the desired security
guarantees at both the source and binary levels. This is similar in spirit to work such as translation validation [113, 129,
168]. One difference with previous work in the area is we want to verify the preservation of a security property instead
of verifying the correctness of an optimization. We are also interested in automatically finding side-channel attacks in
software. Despite their importance, there has been little work on automatically finding such attacks in software. Our
experience (e.g., from [19]) indicates that timing attacks usually arise from control dependencies between user input
and the secret key, which static analysis may be able to find. Intuitively, different code branches execute depending
upon bits in the key. When one branch takes longer than the other, the overall timing reveals information about the bit.

4 Task T2: Safe and Secure Patch Distribution and Installation Techniques
In Task 1, we identified exploitable bugs so that they can be fixed by the developer via a software patch. The attack
window is not closed from the perspective of the user, however, until they receive the patch and the appropriate patch-
based defenses take effect. In this task we propose research directions to minimize the attack window once the patch
is available by securely distributing the patch, and developing safe-to-install patch-based defenses for end-hosts.

4.1 Task T2.1 (Years 1-3): Secure Patch Distribution
Problem Description. At first glance, releasing a patch that addresses an exploitable bug can only help security. We
must, however, take into consideration the entire time line of patch distribution. Current automatic patch distribution
architectures, such as Windows Automatic Update, stagger patch roll outs over days [71]. Our work on APEG shows
an attacker can create an exploit in seconds. Note that the patch tells the attacker about a bug he may not have known
about previously. Also note that most vendors, including Microsoft, disclose whether a patch is security-related or not.

We therefore conclude that current patch distribution architectures, such as Windows Automatic Update, can hurt
security because they allow delayed patch attacks. In a delayed patch attack the first user to get a patch can use
the patch to create attacks against users who have not received the patch. Thus, those that first get a patch are at a
significant security advantage.

We observe that the delayed patch attack is not specific to Internet updates: it is universal to any software system
that requires updating. For example, tanks, ships, trains, and airplanes all have sophisticated computers which may be
networked in order to provide advanced situational awareness. If an attacker can capture a pre-patch and post-patch
version, they can potentially attack all the remaining unpatched vehicles. Solutions we develop to the delayed patch
attack will therefore be applicable in any setting when APEG is possible.

Problem Definition. Our primary research question is can we develop practical methods that prevent delayed
patch attacks? We had originally thought the problem was easy; we were wrong. Considered the following possible
solutions:
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1. Fast Patch Distribution. One idea is to try to deliver patches quickly to end-users, e.g., via a P2P network.
Current patches are typically whole new programs that are megabytes in size. When patches are complete programs,
APEG succeeded in as little as 29 seconds. Suppose vendors distributed patch deltas that only included the changed
lines of code, e.g., as in [58, 126]. Such deltas would be smaller, thus take less time to distribute. Access to deltas,
however, drops APEG time to only about 5 seconds [28]. Preliminary work by Microsoft researchers indicate that
even a P2P network may not be able to get patches out that quickly [28].

2. Patch Obfuscation. Vendors could obfuscate patches to prevent attackers from learning what has changed
between the buggy and patched program. One advantage to using obfuscation is it would not require changes to
the distribution architecture itself. There are, however, several potential problems. First, obfuscation tends to slow
down programs. Thus, the patched version would run slower than the original program. Users are likely to resist
patching if it is guaranteed to slow down their computers. Second, there are known theoretical results that show perfect
obfuscation is impossible in a black-box model [11]. Finally, although obfuscation is used in practice, (e.g., [43, 105,
150]), there is also recent work that successfully breaks some of these tools (e.g., [70, 83, 95, 141, 155]).

3. Encryption. One could initially encrypt patches so that they can be distributed without leaking information
about the bug [28, 84, 133]. Then, after a suitable time period, a decryption key is broadcast. When users receive the
key, they decrypt the patch and apply it. One can argue this scheme is fair: everyone has the opportunity to apply the
patch at the same time. There are, however, several potential problems. First, even though the key is small, we still
encounter the problem of having to get it to everyone simultaneously. Second, it is unclear when the key should be
distributed, e.g., how do you know when enough people have received the patch such that releasing the key is safe?
Third, this approach only provides protection for people who apply the patch immediately (thus no patch testing!),
which is not a common practice in business.

Proposed Work and Approach. We propose to develop a realistic patch distribution scheme that defends against
delayed patch attacks.

Straightforward First Steps. Our first step is to solve one immediate problem: computers that have been offline
should consider themselves not up-to-date and vulnerable to delayed patch attacks. For example, if a computer is
reinstalled from the manufacturers source (e.g., reinstall XP from DVD in order to remove malware), the system
will be out-of-date and vulnerable when it first comes online and will likely be compromised [37]. We plan on
implementing a daemon for Linux, Windows, and OS X that will initially limit network access when reconnecting to
the Internet to only allow the system to check for updates. We will make the daemon freely available. We expect this
to be a straightforward important step to eliminate the danger posed by delay patch attacks to offline hosts.

Next Steps: Multi-Stage Patch Distribution. We plan to develop approaches that do not suffer the drawbacks listed
above. Recall the main drawbacks to obfuscation is it only provides temporary protection and it may slow down
programs. Our next steps are to research a multi-stage patch distribution approach. In particular, we are investigating
an approach where we initially distribute an obfuscated version, and then at a later time release an unobfuscated
version. In this scheme temporary protection is sufficient; we just need to prevent delayed patch attacks until everyone
gets the patch. The unobfuscated version limits the impact of any performance degradation initially experienced with
the obfuscated version.

Our plan requires addressing three issues: obfuscation, fast dissemination, and proving equivalence between the
obfuscated and unobfuscated version. First, can we estimate the amount of time it will take to deobfuscate a program?
What are the knobs we can turn to make obfuscation more difficult to crack in practice? Can we design obfuscation
schemes that are about as efficient than optimized code?

Second, we still want fast patch distribution since the faster we can distribute the obfuscated version the faster
we can subsequently release the unobfuscated version. Microsoft researchers have performed initial studies on patch
distribution schemes, including the theoretical limits [71, 157]. Empirical observations show strong time-of-day effects
across the globe [71]. We should be able to turn these models into optimal strategies for patch distributions. We plan
on partnering with industry affiliates of the PI’s security lab (CyLab [52]) in order to test out such strategies.

Third, we want to convince users that the unobfuscated and obfuscated versions are equivalent, e.g., so that they
know any testing performed on the obfuscated version is relevant to the unobfuscated version. One approach is by
showing semantic equivalence, which is relatively heavy-weight. We hope to develop key-based obfuscation schemes
where the deobfuscated version is derived automatically from the obfuscated version with a key. This is related
to DRM, but not the same since the goal in DRM is to hide a decryption key in the program, not have key-based
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deobfuscation. Are such schemes practical? Is proving state equivalence in any approach sufficient, since it does not
cover effects such as timing?

4.2 Task T2.2 (Years 3-5): Safe Patch Installation
Problem Description. The more quickly users install a patch once they receive it, the smaller the attack window.
Unfortunately, users do not like to install patches immediately. One significant reason is people fear patches will break
their system. We propose (a) patch-based defenses that do not require patch application, and (b) long-term research
for making patches safer to apply on end hosts.

Proposed Work and Approach. While users often do not install patches immediately, users (and businesses) typi-
cally do use intrusion prevention products (e.g., Snort [130] and Symantec 360). Such systems use filters that recognize
and discard exploits from the input stream. 1 A filter differs from a patch in at least two ways: (1) filters are interposed
on the input stream between the buggy program and the user, and (2) filters typically discard exploits, while patches
would take a semantically meaningful action.

While users should eventually install a patch, our immediate direction is to leverage IDS systems to provide
temporary protection by developing mechanisms to automatically generate filters from patches. The filter would
then protect the system until the patch is applied. The PI has previously developed the first theoretical models for
accurate filters (i.e., not accidentally filtering safe inputs while simultaneously filtering all exploit variants) and has
also implemented and tested these approaches on real bugs when only binary code and a single sample exploit are
available [17, 27].

The most straightforward approach of our previous work [27] would first difference B and P to find new security
checks, and then generate a filter that weeds out exploits that fail the new checks. Unfortunately, we do not want to
make it easy to reverse engineer the exact bug fixed by the patch due to delayed patch attacks. How can we resolve this
tension? Further, our previous work was designed to interact with existing intrusion detection/prevention systems for
networked servers. Filters work well in such environments because there is almost always a natural place to interpose
a filter check, e.g., where the server reads in a request. Applying these techniques to a wider class of programs, e.g.,
event-driven or interactive windows programs, will require further research on the effects of interposing a filter check.

Our longer-term goal in this task is to develop mechanisms that improve the safety of patches. This is a natural
extension of the initial filter-based approach; if the filter works as intended, and the filter is derived from the patch, the
patch itself should be safe to apply. We plan on augmenting this work with symbolic execution mechanisms for testing
that the patch has equivalent semantic behavior for safe inputs, i.e., the patch does not break previous functionality.
In particular, this would be an extension of our work on deviation detection [20] where we try and show the absence
of deviations on previously known good inputs. One of the challenges is to make this approach more scalable to all
changes that might be made by a patch. Note that again there is a tension between revealing enough information for a
user to confidently and safely apply the patch, and making it easy for attackers to generate exploits.

5 Task T3: Efficient Binary Analysis
Our proposed research directions require techniques for analyzing binary code. We need binary analysis because
(a) it allows us to argue about the security of the code that will execute, and (b) it is likely to be widely applicable
since everyone has access to binary code. In this task we describe our research plans for building the next-generation
infrastructure, called BAP, which we will available with source code to other researchers.

Problem Description. Analyzing binary code is challenging for two reasons. First, machine instructions on typical
platforms are complex to analyze. For example, in x86 there are single instruction loops (e.g., repz), instructions
whose behavior depends on the operand ( e.g., shl), and most instructions have implicit side effects that set up to
6 additional status flags. Consider the three line x86 program in Figure 3. Any analysis that wants to determine

1In IDS literature, a filter is sometimes called a “signature”. Unfortunately the term “signature” is overloaded, and means something different to
cryptographers.
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/ / i n s t r u c t i o n d s t , s r c
add eax , ebx
s h l eax , edx
j o e x p l o i t a b l e

i f ( eax + ebx > 232 ) o f = 1 e l s e o f = 0
eax = eax + ebx
i f ( edx i s 0 o r 1){

i f ( t o p two b i t s o f eax a r e t h e same )
o f = 0 e l s e o f = 1

}
eax = eax << edx
i f ( o f == 1) go to e x p l o i t a b l e

Figure 3: A small assembly program (left) can have complex low-level semantics (right).

when exploitable is reachable would be required to understand the semantics shown on the right side of the
figure. Second, binary code is different than source. For example, while higher-level languages have types, functions,
pointers, loops, and local variables, assembly has no types, no functions, one globally addressed memory region, gotos
and stack frames instead of local variables. Therefore, analysis designed for a typical source code language may not
be appropriate at the binary level. Our experiments and experience show that much of the higher-level semantics are
irrecoverably lost during compilation.

Prior Work. We discuss other binary analysis tools in Section 7. The PI has previously built an initial binary
analysis prototype called Vine [17]. Vine has been successfully used in about a dozen research projects at various
institutions. Vine lifted x86 up to an unambiguous and explicit intermediate language, and provides a set of algorithms
for building graphs (data and control flow), performing chopping [82] and slicing [162], and calculating weakest
preconditions efficiently [30, 59]. Vine grew organically from a number of projects by the PI [16, 17, 20, 22, 23, 25–
28, 30, 116, 120] and extensions by others [32, 33, 70, 137, 167]. Note Vine did not require debugging or symbol table
information, but could take advantage of it when present.

Proposed Work and Approaches. Our research goal is to develop techniques for analyzing binary code efficiently.
Our approach differs from decompilers, dynamic instrumentation, and disassemblers in that we treat binary code as a
first-class language. At a high level, we want to faithfully analyze binary code as efficiently as source code, and provide
an extensible binary analysis platform similar to source code platforms like LLVM [99], SUIF [6], and CIL [114]. In
order to meet these goals, we propose developing the next-generation binary analysis platform, called BAP. BAP will
address three central issues: it will be a general purpose architecture, implement more efficient symbolic execution
techniques, and provide better support for combined static and dynamic analysis.

1. Well-Designed Architecture. Vine was not designed from the ground up as a general-purpose binary analysis
architecture. Since Vine grew organically, there are few standardized API’s, routines are often specially crafted for
a particular project, etc. There is a widespread need for a faithful, well-designed, and extensible binary analysis
architecture as evidenced by the letters of collaboration.

We have learned how an analysis infrastructure should be designed and built, and BAP will be that implementation.
We have a preliminary 0.1 implementation with the core abstractions we want to provide. One of the key features of
BAP is we raise up binary programs to an unambiguous, explicit, and formalized intermediate language. We have also
added the ability to analyze bi-endian architectures (e.g., to analyze ARM), and now provide true 64-bit support (e.g.,
to analyze AMD-64).

2. Efficient Symbolic Execution. A recurring problem in program analysis is to derive a formula automatically
which is satisfied by inputs that make a particular program assertion true, e.g., [13, 22, 33, 35, 36, 45, 46, 48, 73–
75, 90, 94, 109, 140]. For example, we may want to know under which conditions an input to the program in Figure 3
will execute exploitable. In this case, the assertion would be that the zero flag should be set. Similarly, in
Figure 1a we may want to know when overflow will occur, which can be asserted by s < i at line 5. A main concern
is generating compact formulas [65].

One method for automatically computing such formulas is to calculate the weakest precondition for when the
assertion will hold [59]. At a high level, the weakest precondition is a backward computation that starts from the
assertion, and inductively calculates a predicate for the assertion to hold based upon the current statement. The PI has
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proved the weakest precondition for unstructured programs (such as binary code) can be calculated in O(n2) time and
produces an O(n2) formula size, where n is the number of statements [30]. This proof is a generalization of [65, 100].

A second approach for generating such formulas is using forward symbolic execution. Forward symbolic execution
executes the program on symbolic variables instead of a concrete value. Forward symbolic execution calculates a new
formula for each program path, thus the final formula to reach a particular node is exponential in time and space in the
number of branches encountered.

Although the best theoretical results show weakest preconditions are better than forward symbolic execution,
forward symbolic execution is used extensively in practice, e.g., [13, 22, 33, 35, 36, 45, 46, 48, 73–75, 90, 94, 109,
140]. One reason is that we can concretely execute on the real hardware all statements that do not depend upon a
symbolic input. For example, if there is a call foo(5), symbolic execution can execute the call naively since the
argument is a constant. The weakest precondition will treat the call abstractly, which results in the entire body of foo
in the final formula. Thus, in practice forward symbolic execution may generate smaller predicates in some cases.

We have an initial formal proof that shows we can get the same O(n2) bound on the formula size offered by
weakest preconditions in typical forward symbolic execution settings. Size is important, but size is not everything.
We also want the formulas to be easy to solve [30, 65, 100]. In this task, we will (a) finish writing up the proof and
verify it (e.g., via Twelf [128]), (b) build forward symbolic execution into our infrastructure, and (c) verify the smaller
predicate size in typical applications, such as fuzzing and automated test case generation, are not just smaller but
easier to solve. Such a result would benefit a significant number of applications that currently use forward symbolic
execution [13, 22, 33, 35, 36, 45, 46, 48, 73–75, 90, 94, 109, 140].

3. Combined Dynamic and Static Analysis. We will adapt our platform and explore using a combination of static
and dynamic analysis. The advantage of dynamic analysis is it provides a detailed answer to questions about a single
program path (and it lets the processor do the hard work of evaluating statements). However, dynamic analysis results
are only applicable to the analyzed path. Static analysis generalizes to more program paths, but will often over-
approximate results. A combination of the two has proved useful in initial experiments, e.g., in APEG [28]. We will
build in capabilities for combining the two in BAP.

6 Broader Impact
This research addresses known hard problems for which the PI will research efficient solutions. A successful research
program for Task 1 will (a) be able to automatically create exploits to demonstrate whether a bug was security-
critical, (b) determine how an attacker may exploit the bug, and (c) identify novel bugs. These steps are important for
minimizing the attack window since it will help defenders find and fix exploitable bugs before they can be exploited.
Our work will develop new theoretical and practical models for expressing exploitability (e.g., as predicates over the
state space). Thus, our work is of general interest to software development. Task 1.2 looks at finding novel bugs,
which is of interest to compilers and formal methods. Our work can also be used for automating exploit generation
in general, which is of interest to offensive computing research and national defense. I have included letters from
Symantec and Lockheed-Martin indicating their immediate interest in collaborating in this work if funded. Our
collaborations, if funded, will include shared data sets, access to their in-house experts, and regular meetings to discuss
technical details.

Task 2 will secure the patch distribution process and develop new techniques for safe patch application, which
will shorten the attack window once a patch has become available. This research will help combat threats that current
arise even though patches are available. Our work in secure patch distribution will result in a better understanding of
obfuscation, which is of interest in other domains such as digital rights management. Our work in developing filters
from patches, if successful, will be of commercial interest to security vendors as it is a new approach for developing
filters for their products.

Task 3 will provide an extensible platform for analyzing binary code, which is applicable to the broader computer
science audience including model checking and compilers. For example, efficient methods for formally reasoning
about code and bad execution states is important to these and other areas. We have collaborations with people in the
model checking and theorem proving fields to help transfer ideas between communities. For example, in APEG we
worked closely with the author of the decision procedure we used, which led to us creating methods that sped up the
decision procedure by up to 200% in our experiments [28].

12



7 Related Work By Others
Previous work most closely related to our proposed tasks include binary code analysis, symbolic execution, delta
debugging, and filter generation.
Binary Analysis. Other researchers have also recognized that source code analysis is insufficient (e.g., [8, 39]). While
there are many tools for analyzing binary code (e.g., [57, 123, 131]), most do not represent the code in an explicit
and unambiguous IL like BAP, e.g., available architectures we are aware of were not suitable for determining when
the jump would be taken in the 3 line program in Figure 3. The most closely related binary analysis platform in
the spirit of BAP is CodeSurfer/x86 [8–10]. The published work on CodeSurfer/x86 has focused primarily on alias
analysis for assembly [8–10]. Alias analysis is extremely important to scaling any kind of static analysis, and we have
successfully implemented their analysis in BAP. Unfortunately, CodeSurfer/x86 is not readily available, thus a more
detailed comparison is not possible.

Another related project is Microsoft’s next-generation compiler infrastructure, called Phoenix. Phoenix has the
ability to read in Microsoft-compiled PE files and then reconstruct a low-level IR when debugging information is
available. Phoenix does not aim for faithful binary analysis, e.g., it cannot faithfully analyze the 3 line assembly
program in Figure 3 [106]. Phoenix would be an interesting platform to try to integrate a top-down source analysis
with a bottom-up binary analysis.

Decompilers (e.g., [39, 41, 61]) raise low-level code up to high-level code, usually employing heuristics to re-
cover information lost during compilation. For example, one could then run source code analysis on the decompiled
code [39]. Although decompilers are about recovering higher-level abstractions, which is different than our goal, the
general techniques are of interest. For example, Mycroft proposed a type inference algorithm for decompilers, which
may be useful strictly at the binary level [111].

Binary instrumentation engines (e.g., [1, 98, 104, 112, 115, 125, 146]) typically do some analysis of binary code
in order to find instrumentation points. These tools usually take a purely dynamic approach, while we take a primarily
static approach. For example, such tools do not typically perform extensive analysis on how exactly processor flags
may be updated. It would be interesting to couple static analysis using BAP with such instrumentation engines.
Translation Validation and Typed Assembly Language. Another complementary approach to fixing the software
life-cycle is to first formally verify the high-level source code, then check that compilation preserves all desired
properties. Typed assembly language (e.g., [49, 108]) helps verify the compiler by keeping types down to the assembly
level. Our work goes up from binary code to an intermediate representation. It would be interesting to see whether we
could recover such types, as well as how much such information increased the accuracy of analysis.

Translation validation targets the problem of verifying that an input S to a compiler is semantically equivalent to
the output T of the compiler (e.g., [113, 129, 168]). This is a complementary approach when source code is available.
Although translation validation has looked primarily at verifying that a compiler optimization is implemented correctly,
it would be interesting to adapt it to check if security properties hold before and after an optimization.
Symbolic Execution. Our basic approach generates a formula that is satisfied by all inputs taking a particular path, and
then solves the formula to create a specific input that executes the path. This core idea was introduced in the 1970’s [77,
90], and since then has appeared in a myriad of applications including automated test case generation (e.g., [13, 15, 34–
36, 73–75, 77, 87, 90, 140]), automated signature generation (e.g., [45, 46]), verification (e.g., [65]), automated reverse
engineering (e.g., [33, 48]), and fuzzing for security vulnerabilities [72, 75]. Recent work in automated test case
generation can produce test cases for a large percentage of program statements (e.g., [34]). This goal is related to ours
since determining reachability to possible exploitable statements is important. However, we also want to execute the
statements under the specific conditions necessary to exploit the program.

There is a wide body of work that confirms the need to reduce false positives in bug reports, e.g., [50, 93, 134].
Work that combines unsound bug-finding with symbolic execution is probably the closest in spirit to our work. This
work has primarily been carried out in Java, e.g., Check ’n’ Crash [50]. Engler et al. propose a statistical rank heuristic,
called the z-rank, of whether a bug is likely real or a false positive in Metal/MC [62, 93].

Fuzz-testing can find new bugs even when given only the binary code. For example, fuzz testing has found many
integer overflows (e.g., [75, 161]), and found bugs in web-browsers (e.g., [2]). Part of our goal is similar, and we
would like to extend these techniques to generate specific exploits.
Delta Debugging. Behavioral difference testing [124], delta debugging [166], and similar work (e.g., [42, 163]) is
a developer-oriented technique for pinpointing why a test case failed after changing code. Our work on testing pre-
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and post- patch program may benefit from such techniques for explaining why a patch breaks a system. However, our
main goal is to show a patch is safe to apply.
Filter Generation. There is considerable work exploring the problem of automatic filter generation for intrusion pre-
vention systems (e.g., [45–47, 51, 89, 92, 102, 103, 118–121, 127, 145, 156, 159, 160, 164, 165]). Sidiroglou et al.
have proposed that in some cases patches can be generated instead of filters [142–144]. Automatically generated de-
fenses such as these are not intended to replace installing a patch created by the software developer, but are significant
and complementary security mechanisms.

8 Integrated Education Plan
My interest in teaching is motivated by the joy of helping students become critical thinkers when using computer
science in work and research. My own interest in teaching and research was strongly influenced by courses which
required students to constantly evaluate “Why is this secure?”. Critically answering such questions about security
requires a combination of theory and experimentation.

Reusable Software Security Curriculum. I am setting up a repository for complete software security courses and
making it available online at http://security.ece.cmu.edu. 2 The curriculum teaches the theory of secure
software, along with hands-on labs to reinforce the fundamental concepts.

Lecture Notes on Software Security. Unfortunately, there is no single suitable textbook that explains all the concepts
necessary to understand modern software security. For example, someone entering the field of software security should
understand symbolic execution, taint analysis, and type safety. Current courses at Carnegie Mellon, and many other
institutions I am familiar with, rely on students reading papers in order to glean the fundamental techniques. Reading
research papers is important, especially to convey the current state-of-the-art ideas, but is not optimal for teaching the
underlying concepts. I am developing a series of lectures notes that teaches many of the important details in software
security in a systematic fashion. For example, the notes introduce a small representative language. The language
provides a consistent and logical vocabulary throughout the course. We then add elements to the language in order
to explain more advanced concept. For example, we show how forward symbolic execution and taint analysis can be
built by augmenting an interpreter for the language. One of the goals of our small language is to detail secure coding
techniques explicitly in a language-neutral ways.

Hands-on Labs. In my experience, hands-on labs are an effective tool for solidifying theoretical concepts, and
helping students develop an understanding for how to combine individual ideas in order to solve real world problems.
The challenge when creating labs is to make them interesting, possible within the time allotted, have them directly
reinforce concepts from lecture, unambiguous, and be set up so students with variable levels of background knowledge
can perform them. I am developing new hands-on labs that integrate with the above lecture notes. The labs reinforce
the fundamental concepts and simultaneously show the students how the techniques can be applied to different problem
settings. For example, students read about taint analysis for binary code, then show how it could be applied to find
SQL injection attacks on the web. We have also designed a software security challenge, which consists of 8 different
vulnerable VM’s and a centralized automatic grading server. The challenges require students to apply secure coding
concepts to languages they have probably never seen before, e.g., we have an input validation vulnerability in the
procmail mail filtering language.

I also plan on developing modifications on our next-generation binary analysis platform (Section 5) to help students
more easily understand binary analysis, reverse engineering, and exploit authoring. Both the private and public sectors
are looking for students with these skills. However, these skills have traditionally been difficult to teach in large part
due to the complexity of understanding binary code. Our curriculum uses our binary analysis techniques to reduce this
complexity to a simpler set of semantics so that students can focus on core ideas.

Software Security Community Web-Site. Software security is becoming an integral course at many universities. In
an effort to create better courses, I have created a website for instructors and students to share information. We will
develop modules that incorporate hands-on assignments, and distribute them freely in order to help satisfy demand
for software security courses. Instructors can log on and add material, view solutions to previous assignments, and
download lecture notes and labs contributed to the site. Students can see previous courses, assignments, and lecture

2Although the site is not yet public, it is up and you can log on with account ’instructor’ and password ’rotcurtsni’.
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notes that have been made available. We plan on adding bulletin-board features for both instructors (e.g., to describe
possible lab pitfalls) and students. We have already received a commitment from two professors at UC Santa Barbara
in this effort, as noted in the letters of collaboration. We have talked to other universities, such as UC Berkeley, who are
also interested in participating. We are also using the website to facilitate our outreach to other universities (described
below).

Courses. We are providing the lecture notes and labs described above, along with sample syllabi and course
schedules, via the above website. There is currently one set of materials available from the course I developed last
semester, and one will be developed in the next semester. Last semester I developed a new course on vulnerability,
defense, and malware analysis. For each topic, the course first starts with the best-in-industry tools, and then progresses
through the recent research. Each student must complete a course project, which is intended to be a complete rough
draft of a publishable idea. The second course focuses on software security in general, and is a core course in the
Carnegie Mellon professional Master’s program. I am currently bringing it up-to-date by adding new labs focusing
on static analysis of source code and binary code, security protection offered by the latest approaches (e.g., stack
randomization), and the limitations of those protection schemes (e.g., return-oriented programming [31]).

Development of New Software Security Lab. I believe research informs education. I am developing a software
security laboratory which is geared towards educating undergraduate and master’s students. The lab will be designed
to allow students to safely explore attacks and defenses. The equipment for this lab currently consists of about 15
machines. I have already used this lab as part of the malware analysis course described above, and will continue to
use it in my courses, as well as make it available to other instructors at Carnegie Mellon. I am mentoring the Carnegie
Mellon offensive computing team, which consists of undergraduates and graduates who enjoy participating in various
red-team security contests such as the UC Santa Barbara/USENIX “capture the flag” contest.

Community Outreach. I participate in a continuing Carnegie Mellon information security education outreach
program offered to historically Black and Hispanic-serving institutions [153]. This is a two-week long seminar given
in the summer each year to faculty at such institutions. The seminar provides tools and teaching techniques for
computer security. Partnering institutions this year include Bowie State University, Hampton University, Norfolk
State University, and the University of District Columbia.

We also engage in outreach and collaborations with industry. The PI is an active member of Carnegie Mellon’s
CyLab, a campus-wide initiative on security. We routinely meet with industry partners, and the PI has arranged for
collaboration with Symantec and Lockheed-Martin if funded, as described in the included letters of collaboration.

9 Project Timeline
Our timeline tackles focuses on Tasks T1.1 and T2.1 in years 1-3, with a transition to Tasks T1.2 and T2.2 in years
3-5. The Tx.2 tasks also act as a contingency in case we prove negative results on the Tx.1 tasks. We expect to get
initial results generating exploits within the first year of Task T1.1, and use later years to investigate more advanced
concepts. We expect in Task T2.1 to develop an initial better patch distribution architecture using the proposed multi-
stage approach within the first two years. Task 3 is ongoing research performed throughout the 5 year plan, with a
up-front focus to bootstrap the other tasks. Our overall timeline in graduate student months is:

T1.1 T1.2 T2.1 T2.2 T3

Year 1 4 4 4

Year 2 5 4 2 1

Year 3 2 4 4 2

Year 4 1 6 4 1

Year 5 1 4 6 1

10 Prior NSF Support
The PI has not received prior NSF support.
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