
CAREER: Scalable and Trustworthy Automatic Program Repair

A fundamental challenge for computer scientists over the next decade is to produce and maintain
systems that have fewer defects and are more resilience to attacks. Software maintenance accounts
for over $70 billion per year and is focused on repairing defects. Defects are reported so rapidly
that programs ship with known bugs and even security bugs take 28 days, on average, to fix.

Intellectual merit. The proposed research will reduce the time and effort gaps between finding
and fixing software defects by producing a scalable and trustworthy technique to automatically
repair program bugs. Preliminary results demonstrate that genetic programming, program analysis
and test cases can generate viable repairs for off-the-shelf C programs. Once a defect has been found,
evolutionary algorithms produce variant programs, performing a biased search to locate one that
fixes the defect without impairing key functionality. Both the defect and the program’s requirements
are represented using standard test cases. Prototype tools using this approach have repaired eight
classes of defects in 18 programs, including multiple security-critical servers, totaling over 170,000
lines of code. There are multiple components to the proposed research, which ultimately aims to
apply automated repair to real systems by addressing the challenges of scalability and trust:

• Design and investigate algorithms for scaling automated repair to real-world pro-
grams: The research will focus on programs with large test suites and difficult-to-localize
defects. Using the insight that only the final repair need be perfect, intermediate steps are
permitted to “break the rules” (e.g., by using only a portion of the test suite or by guessing
a fault location) as long as the final repair is fully vetted. The research will investigate test
suite selection, change impact analysis, and fault localization within the context of repair.

• Study and evaluate approaches for producing trusted repairs: The research will pro-
duce high-quality repairs that can be directly verified. The primary insight is that trustworthy
repairs must use processes that developers already trust, such as existing specifications or in-
variants. The research will incorporate partial correctness specifications, specification mining,
typestate-guided program repair, and specification-guided program synthesis.

• Propose and carry out compelling empirical repair evaluations: The research will
produce methods for gaining confidence that a produced repair does not introduce new defects,
does not impair normal functionality, and generalizes to address the root of the problem. This
will include evaluating repairs on indicative workloads as well as against random fuzz inputs
and mutated attacks. In addition, the research includes an automated hardening scenario in
which the program and attacks against it are coevolved over time, simulating parts of the
security arms race.

Broader impact. Billions of dollars are lost each year due to software defects, and the proposed
research is well-suited to addressing multiple classes of real-world bugs. The educational goals of
this project are to foster student interest in the exciting area of automated program repair. First,
we will provide hands-on research experience and mentoring for both graduate and undergraduate
students. The results of the research will be integrated into existing graduate courses and will help to
create challenging new undergraduate courses in the area of programming languages. Third, we will
continue our fellowship and outreach activities to encourage participation from underrepresented
undergraduates.
Key Words: software; repair; formal specification; fault localization; test suite; fuzz testing.

1 Introduction

Software quality is an overarching problem. Software maintenance, traditionally defined as any modification
made on a system after its delivery, sums up to $70 billion per year in the US [97], and can account for as
much as 90% of the total cost of a typical software project [87]. Repairing defects and otherwise evolving
software are major parts of those costs [79]. We propose to reduce the costs associated with debugging by
repairing programs automatically.

Currently, manually repairing bugs is a major bottleneck to software quality. First, bugs are plentiful.
The number of outstanding software defects typically exceeds the resources available to address them [6].
For example, in 2005, one Mozilla developer claimed that, “everyday, almost 300 bugs appear [. . .] far too
much for only the Mozilla programmers to handle” [7, p. 363]. Second, bug repair is expensive. In a 2008
survey, 139 North American firms each spent an annual mean of $22 million fixing software defects [14].
Moreover, the cost of repairing a bug increases as development progresses: a $25 fix while the program is
under development can increase to $16,000 after the software has been deployed [112]. Third, bug repair
is time-consuming. On the Mozilla project between 2002 and 2006, half of all fixed bugs took developers
over 29 days [44]. For the ArgoUML and PostgreSQL project, half of all bugs required over 190 days to fix.
This is particularly troubling in critical code: in 2006, it took 28 days on average for maintainers to develop
fixes for security defects [98]. Fourth, as a result, deployed programs contain costly known and unknown
bugs [58]. In a 2008 FBI survey of over 500 large firms, the average annual cost of computer security defects
alone was $289,000 [82, p.16]. In 2002, NIST calculated the average US annual economic cost of software
errors to be $59.5 billion, or 0.6% of the GDP [73].

To alleviate this burden, we propose an automatic technique for repairing program defects. Our technique
targets off-the-shelf legacy applications. We use genetic programming to evolve program variants until one
is found that both retains required functionality and also repairs the defect in question. To our knowledge,
this is the first successful use of genetic programming to repair real applications, and our approach has
been well-received critically (see Section 2.4). Our technique takes as input a program with a detected
defect, a set of positive testcases that encode required program behavior, and a failing negative testcase
that demonstrates the defect. We may also take advantage of partial correctness specifications, test case
generators, and indicative workloads, if present, to help generate and validate repairs. In contrast to previous
repair approaches, which handle only a specific type of defect such as buffer overruns [89, 90], our technique
is generic, and we have applied it successfully to multiple types of defects from the realms of software
engineering and security.

Our preliminary experiments hold out the promise of automated repair for real systems, and the proposed
research program aims to fulfill that promise. The two key challenges are scalability and trust. Consider a
critical server that is subject to a security attack at midnight. If the attack can be detected, our proposed
approach can fashion a repair that can be deployed until developers arrive in the morning to manually
address the situation. To be useful in such a situation, automated program repair must produce trustworthy
patches for large systems in a timely manner. Two insights guide this research. First, we note that only the
final repair has to be perfect, and we thus permit intermediate steps to temporarily “bend some rules” (e.g.,
use only some of the test cases, or make a guess about the location of the fault) as long as ultimate result is
fully correct. This insight provides the freedom to scale to large systems. Second, we claim that the key to
trustworthy repairs is to use processes that developers already trust, such as existing specifications or fuzz
testing. This insight encourages us to take advantage of existing verification information, such as by using
partial specifications to rapidly rule out certain repairs.

In addition to evaluating our results in terms of the resources required to produce trusted repairs to known
defects, we also propose an “automated hardening” evaluation scenario. In this setting we simulate both
sides of the security “arms race” by co-evolving a program and attacks against it. If a program snapshot
from six months ago can be automatically hardened to defeat an attack from three months ago with no
knowledge of that attack, we gain confidence that our technique can be used proactively as well as reactively.

1

2 Automated Program Repair — Preliminary Results

This section describes the technical basis of our proposal: the use of genetic programming and test cases to
evolve repairs for program defects. Preliminary results published this year give additional details [37, 70, 109].

2.1 Technique

Genetic programming (GP) is a computational method inspired by biological evolution which discovers
computer programs tailored to a particular task [55]. GP maintains a population of individual programs.
Computational analogs of biological mutation and crossover produce program variants. Each variant’s suit-
ability is evaluated using a user-defined fitness function, and successful variants are selected for continued
evolution. GP has solved an impressive range of problems (e.g., see [1]), but to our knowledge it has not
previously been used to evolve off-the-shelf legacy software.

We use genetic programming to discover program variants that avoid a given buggy behavior, such as
a security vulnerability. A program variant is represented by its abstract syntax tree (AST). The fitness,
or aptitude, of a variant is based on whether or not it passes the test cases. Formally, a test case consists
of input to the program, any necessary global state, and an oracle comparator function that encodes the
desired response (e.g., known-good output from a previous version) [18]. We use the term positive test case

to refer to a standard test case (e.g., regression, unit, etc.) that encodes desired program behavior. The
term negative test case refers to a program input that demonstrates the defect. The negative test case must
include an oracle comparator that can decide if the program exhibits the defect: it is thus similar to a
self-certifying alert [26].

We guide program modifications by restricting attention to program statements that are likely to have
caused the defect. We define the weighted path for a negative testcase as the sequence of statements visited
during the execution of the negative testcase but not that of a given positive testcase. We hypothesize that
statements in the weighted path are more likely to cause the defect than statements that are executed for
both the positive and negative testcases (e.g., initialization code). We assume that the latter statements are
less likely to contribute to the defect and that statements only visited during the unsuccessful run are more
likely to relate to the defect in question.

We apply two sorts of program modifications to statements along the weighted path. First, our mutation

operator deletes, inserts or replaces statements. When inserting a new statement, we choose a statement that
is already present in the program and copy it to a new location, hypothesizing that the program contains
the seeds for its own repair. That is, we assume that the program is usually implemented correctly, and
that the defect is a behavioral outlier [33]. For example, if the defect is caused by a missing null check, the
program is likely to contain a correct null check somewhere else that can be adapted to form the repair.
Second, our crossover operator combines two program variants, potentially swapping statements along their
weighted paths.

The fitness of a variant is computed by pretty pretting and compiling its modified AST and running the
test cases against the resulting executable in a safe sandbox. The fitness function is simply the weighted
sum of the total number of positive and negative test cases passed. Genetic programming is an iterative
process. As such, variants with high fitness values are retained into the next generation, while low-fitness
variants are discarded. A program variant that passes all the test cases is called a primary repair, and the
iterative search stops when a primary repair is found. Using tree-structured differencing [2], we can view the
primary repair as a set of changes to be applied to the original program. We use delta debugging [117, 119]
to efficiently compute a one-minimal subset of changes from the primary repair. A change subset is one-
minimal if removing even a single change from it would cause the resulting program to fail a test case.
This minimization technique eliminates redundant code from the primary repair to produce the final repair.
Because the GP technique operates on the AST and source code of the program, the repair can be reified as
a standard patch (i.e., as produced by diff) or deployed directly.

2

1 void zunebug(int days) {

2 int year = 1980;

3 while (days > 365) {

4 if (isLeapYear(year)){

5 if (days > 366) {

6 days -= 366;

7 year += 1;

8 }

9 else {

10 }

11 }

12 else {

13 days -= 365;

14 year += 1;

15 }

16 }

17 printf("year is %d\n", year);

18 }

1 void zunebug_repair(int days) {

2 int year = 1980;

3 while (days > 365) {

4 if (isLeapYear(year)){

5 if (days > 366) {

6 // days -= 366; // deleted

7 year += 1;

8 }

9 else {

10 }

11 days -= 366; // inserted

12 } else {

13 days -= 365;

14 year += 1;

15 }

16 }

17 printf("year is %d\n", year);

18 }

(a) (b)

Figure 1: Buggy Zune code (a) and produced repair (b).

2.2 Motivating Example

On December 31st, 2008 a widely reported bug was discovered in the Microsoft Zune media players, causing
them to freeze up [17]. The fault was caused by a bug in the code [64] shown in Figure 1(a). When the
value of the input days is the last day of a leap year (such as 10593, which corresponds to Dec 31, 2008), the
program enters an infinite loop on lines 3–16. While the highlighted code may seem relatively simple, over
two million players were affected by the defect [24].

We now walk through the evolution of a repair for this program. We first produce its AST and determine
the weighted path, using line numbers to indicate statement IDs. The positive test case zunebug(1000) visits
lines 1–8, 11–18. The negative test case zunebug(10593) visits lines 1–16, and then repeats lines 3, 4, 8, and
11 infinitely. For this example, our negative test cases consist of the inputs 366 and 10593, which cause an
infinite loop (instead of the correct values, 1980 and 2008), and our positive test cases are the inputs 1000,
2000, 3000, 4000, and 5000, which produce the correct outputs 1982, 1985, 1988, 1990 and 1993.

For the purposes of illustration, we focus on one variant, V , that starts out identical to the original
program. In Generation 1, two operations mutate V : the conditional statement “if (days > 366) { days -=

366; year +=1; }” is inserted between lines 6 and 7 of the original program; and the statement “days -= 366” is
inserted between lines 10 and 11. Note that the first insertion includes not just the if but its entire subtree.
This produces code that passes the negative test case 366 (year 1980) and one positive test case 1000.

V survives Generations 2, 3, 4 and 5 unchanged, but in Generation 6, it is mutated with the following
operations: lines 6–10 are deleted, and “days -= 366” is inserted between lines 13 and 14.

At this point, V passes all of the test cases, and the search terminates, producing V as the initial repair.
The minimization step is invoked to discard unnecessary changes. Compared to the original program (and
using the line numbers from the original), there are three key changes: c1 = “days -= 366” deleted from line
6; c2 = “days -= 366” inserted between lines 9 and 10; and c3 = “days -= 366” inserted between lines 10 and
11. Only c1 and c3 are necessary to pass all tests, so change c2 is deleted. This produces the final repair,
shown in Figure 1(b). This is one of the many possible repairs that the search might produce.

2.3 Preliminary Results

We have implemented a prototype tool that uses the proposed repair algorithm to fix defects in off-the-shelf,
unannotated, legacy C programs [37, 70, 109]. Figure 2 lists preliminary results of eighteen repairs on over
170,000 lines of code. Minimizing the primary repair using delta-debugging is a deterministic post-processing
step that takes twelve seconds (eight fitness evaluations) on average. The final result is a standard diff-

3

Program LOC Program Description Defect Repaired Time # Fitness

gcd 22 Euclid’s algorithm infinite loop 276 s 909
zune 28 MS Zune example infinite loop 78 s 460
uniq 1146 text processing segfault 32 s 139
look-ultrix 1169 dictionary lookup segfault 42 s 120
look-svr4 1363 dictionary lookup infinite loop 51 s 42
units 1504 metric conversion segfault 1528 s 9014
deroff 2236 document processing segfault 132 s 227
nullhttpd 5575 webserver heap buff. overflow [74] 1394 s 1800
openldap io 6159 authentication server non-overflow D.O.S. [76] 665 s 8
leukocyte 6718 computational biology segfault 544 s 12
indent 9906 source code processing infinite loop 7614 s 13628
python complexobject 11227 web app. interpreter overflow error 1393 s 23222
lighttpd fastcgi 13984 webserver CGI module heap buff. overflow [60] 395 s 52
imagemagick fx 16851 image processing incorrect image output 1240 s 131
flex 18775 scanner generator segfault 4660 s 9560
atris 21553 graphical game stack buff. overflow [10] 84 s 285
php string 26044 web app. interpreter integer overflow [78] 2678 s 18081
wu-ftpd 35109 FTP server format string vuln. [113] 5397 s 74

total 179369 (18 distinct programs) (18 defects in 8 classes) 1567 s 4320

Figure 2: Preliminary Experimental results: eighteen programs automatically repaired by our prototype tool.
The “Defect” column describes the bug; a citation indicates that publicly-reported security vulnerability was
repaired using the published exploit as the negative test. “Time” gives the sum total seconds to generate the
primary repair, including time spent in the genetic algorithm (typically 10% of the listed time), time spent
compiling variants (30%), and time spent calculating the fitness of a variant by running the test suite (60%).
Fitness calculations dominate the run-time; the final column gives the total number of times the entire test
suite was run to generate and validate a successful repair. In each case, at most ten positive test cases were
used. Each row represents the average of 100 random trials.

style patch, two to eleven lines long on average for our benchmarks, that can be presented to developers or
incorporated directly.

The programs repaired span a wide variety of domains and include operating system utilities, graphical
games, webservers, and scientific computing applications. The entire program can be repaired as a unit
(e.g., as in wu-ftpd), or a single module can be repaired in isolation without modifying or analyzing the
rest of the code (e.g., as php, where only the string module was repaired). The defects repaired fall into
two broad categories. First, we have repaired many standard software engineering bugs, including infinite
loops (e.g., indent), segfaults and crashes (e.g., leukocyte), and logic errors resulting in incorrect output
(e.g., imagemagick’s fx module). We have also used generated repairs for five common categories of security
vulnerabilities: remote heap buffer overflow, non-overflow denial of service, format string vulnerability, local
stack buffer overflow, and integer overflow. Those vulnerabilities were repaired in standard security-critical
programs such as openldap, wu-ftpd, lighttpd and php. We view security as a particularly important domain for
this technique, since helping developers rapidly patch security flaws would be beneficial. We thus particularly
value our approach’s ability to repair multiple different types of security vulnerabilities (i.e., not just buffer
overruns) without prior knowledge or a model of the attack or desired repair. To the best of our knowledge,
this is the first generic, source-level repair technique to work across multiple attack types and many programs
(cf. [61, 83, 89, 90, 91, 92, 93]).

However, significant challenges remain. One impediment for a genetic programming evolutionary algo-
rithm is the vast search space it must sample to find a correct program. In Figure 2, the time taken to repair
a program is not related to its size in lines of code, and while many repairs are quite rapid (e.g., under a

4

minute), some may be infeasible for many settings (e.g., over 13000 test suite evaluations for indent). In
addition, although all of the repairs pass all of the test cases and have been manually inspected, developers
may be wary of using them. While merely presenting a developer with a candidate patch reduces the time
required to address the bug [103], additional assurance is required before such repairs would be automatically
deployed. The heart of this proposal is research to scale this technique to more demanding systems while
producing trustworthy repairs.

2.4 Academic Reception

The preliminary work described here and published this year has been well-received by the academic com-
munity, winning two best paper awards (ICSE’09 [109] and GECCO’09 [37]), a best short paper award and
best presentation award (SBST’09 [70]), the 2009 IFIP TC2 Manfred Paul Award for “excellence in software:
theory and practice” [77, e1024], and the gold medal at the 2009 “Humie” awards for human-competitive
results produced by genetic and evolutionary computation [54, $5000]. We are quite excited about this line
of research and perceive that some others are as well. This critical validation and attention provides some
confidence that the tools and algorithms we produce may be adopted and disseminated if they can scale to
produce trustworthy repairs.

3 Proposed Research

While our preliminary results demonstrate that our technique can automatically repair multiple classes of
defects for programs or modules of moderate size, conversations with developers and suggest that two major
hurdles remain before our repairs would be used in industrial practice, even in an advisory capacity: trust

and scalability. Regarding trust, even if a repair produced by a biased search passes all available test cases,
additional guarantees about how the process works and how the repair behaves are necessary if the repair is to
be deployed. As just one example, developers may seek assurance that a repair generated to fix one security
flaw does not introduce a different security flaw. Regarding scalability, while our prototype implementation
can produce viable repairs a small number of test cases, in practice mission-critical systems have quite large
test suites. Since program size is not the bottleneck, we must demonstrate that we can produce repairs for
such systems.

Ultimately, trust and scalability are intertwined in this setting: if test cases are the primary method for
ensuring that our repairs do not impair functionality, scaling to larger test suites will be necessary to ensure
trust in repairs. Similarly, many trust-enhancing techniques reduce the search space of possible repairs (e.g.,
by removing from consideration repairs that violate partial specifications) and thus may potentially increase
scalability. Two main insights guide our proposed research. First, we can allow an intermediate repair to
be only partially validated as long as the final repair is fully vetted. Second, we must use techniques that
developers already trust, such as fuzz testing and partial correctness specifications, to guide repair generation
and verify repairs.

We propose two research directions related to increasing trust in the repairs:

1. Guide repair construction using formal specifications. We will combine synthesis, typestate repair,
and refactoring for verification to produce verifiable patches.

2. Evaluate repair quality empirically with fuzz tests, workloads and hardening. We will gain con-
fidence that functionality is not impaired, that new defects are not introduced, and that repairs are
general rather than fragile.

And two research directions related to producing repairs for large programs:

3. Produce repairs in the presence of large test suites. We might, for example, use a subset of the test
suite for intermediate fitness evaluations, scaling without sacrificing repair quality.

5

4. Produce repairs of poorly-localized faults. When the weighted path is does not localize the defect’s
location, we will reduce the search space by interleaving fault localization with program repair.

3.1 Research: Quality: Guiding Repairs with Formal Specifications

Formal, machine-checkable specifications of a software program hold great promise for creating trustworthy
repairs. Unfortunately, formal specifications are difficult to apply directly to program repair. For example,
a program verified against a full functional specification either has no bugs, has a bug in its specification, or
used an unsound verification technique — the latter two cases are beyond the scope of this research. However,
programs often have partial correctness specifications. For example, many programs developed at Microsoft,
including all of Windows Vista, contain relatively simple specifications and annotations [27] related to the
correct use of locks, in-bounds array accesses, and other typestate properties [11, 28, 43]. In this context,
a formal specification is often a first-order logic Floyd-Hoare pre- or post-condition or assertion. However,
it may also take the form of a finite state machine over an alphabet of important operations [103]. Partial
correctness specifications permit the possibility that a “partially correct” program still exhibits a bug. We
can ensure that our fixes for such bugs do not introduce a specification violation. In this light, a testcase is
just a partial correctness specification that says “this input should lead to this observable behavior.”

We propose to construct repairs that conform to such partial specifications. A first step would be to use
the existing verification process as a final test case. For example, if a candidate repair fixed the bug under
consideration, but introduced a violation to the locking specification, it would be rejected, and the genetic
programming search would continue. At a deeper level, we further propose to use the specification to rule out
infeasible mutations, and thus reduce the search space, while maintaining repair trustworthiness. For partial
specifications that can be phrased at the program-expression level (e.g., pre- and post-conditions [115, 116],
or the type state or locking policies mentioned above), potential modifications would be subject to symbolic
execution [11, 22, 28] or verification condition generation [57].

In cases where logical pre- and post-conditions are available, we propose to restrict attention to repairs
for which the resulting formulas are at least as strong as they are in the original program. Consider a
program that has an array bounds specification and maintains the invariant 0 ≤ i ≤ 10 on a particular path.
A candidate repair that maintains 2 ≤ i ≤ 7 would be acceptable, since 2 ≤ i ≤ 7 ⇒ 0 ≤ i ≤ 10, but a
repair that maintains 0 ≤ i ≤ 12 would not be, since 0 ≤ i ≤ 2 6⇒ 0 ≤ i ≤ 10 (e.g., i > 10 may correspond
to an out-of-bounds array access). A modification can be rejected in this manner with a single query to an
automated theorem prover [29, 31] rather than an expensive set of testcase evaluations.

If pre- and post-conditions are available for a region of interest, we may synthesize conformant code
rather than using a genetic programming search. Recent work on verification and synthesis by others has
been able to generate non-trivial algorithms (e.g., implementations of merge sort) given standard pre- and
post-conditions [95, 96, 99] (e.g., the output array is a permutation of the input array, and time is bounded
by Θ(n log n)). In previous work, we developed an automatic algorithm for soundly repairing programs when
formal typestate specifications are present [104]. The algorithm adjoins multiple copies of the finite state
specification and uses those copies to track missing or extraneous events. By tying the edges to program
locations, a provably safe repair can be generated along a single path. By using a sound path predicate
analysis [84] or including dynamic path tracking in the repair [12], a single-path repair can be correctly
applied to a larger program. Finally, we also have previous work in transforming programs to make them
easier to verify with respect to pre- and post-conditions [115, 116]. For example, although a loop and its
unrolling have equi-satisfiable verification conditions, those conditions may not be equally easy for existing
model checkers and theorem provers to verify. We have found that by applying a series of semantics-
preserving transformations to reduce efficiency, we can make a program easier to verify. If our automated
repair is correct but cannot be verified directly, this transformation approach can be used to refactor that
repair into one that can be verified.

We propose to combine the approaches of synthesis, correct typestate repair, and refactoring for veri-
fication, to produce verifiable patches. If our weighted path (or another fault localization technique) can
narrow down the location of the fault to a portion of the code for which unsatisfied pre- and post-conditions

6

Successful Requests Repair Requests Lost Fuzz Test Failures
Program Before Repair Made? to Repair Quality Generic Exploit

nullhttpd 100.00% Yes 0.00% ± 0.25% 0 7→ 0 10 7→ 0
lighttpd 100.00% Yes 0.03% ± 1.53% 1410 7→ 1410 9 7→ 0
php 100.00% Yes 0.02% ± 0.02% 3 7→ 3 5 7→ 0
False Positive 1 100.00% Yes 0.00% ± 2.22% 0 7→ 0 —
False Positive 2 100.00% Yes 0.57% ± 3.91% 0 7→ 0 —
False Positive 3 100.00% No — —

Figure 3: Empirical security repair evaluation. Each row represents a different repair scenario, and is
separately normalized to 100%. The number after ± indicates one standard deviation. “Lost to Repair
Quality” indicates the fraction of the daily workload lost after the repair was deployed. “Generic Fuzz Test
Failures” counts the number of held-out fuzz inputs failed before and after the repair. “Exploit Failures”
measures the number of held-out fuzz exploit variants failed before and after the repair.

already exist (e.g., as part of a partial correctness specification), we can generate candidate repairs by delet-
ing subsets of the affected lines and using the synthesis procedure fill in the blanks with code that satisfies
the specification. If a typestate specification already exists, our previous work can be used to generate a
correct repair. In either case, the resulting repaired program can be verified using the same mechanism
as the original (e.g., model checking, theorem proving, etc.), and our refactoring approach can be used to
phrase the repair so as to facilitate and make practical that verification.

If pre- and post-conditions are not available, we can use invariant generation techniques or specification
mining to infer them [5, 72, 108, 114]. For example, if the original program has the postcondition X for
the code region of interest on all positive test cases, and the postcondition X ∧ ¬Y on the negative test
case, we can synthesize code to meet the postcondition X ∧ Y as a candidate repair. In practice, finding
similar clauses in first-order logic formulas may require a large number of queries to an automated theorem
prover, although many optimizations from the domain of predicate abstraction may be applicable [11]. In
addition, if specification mining is used to guide the synthesis, accurately inferring specifications without
false positives will be critical. We have recent work in automated specification mining that improves on the
state of the art by reducing the false positive rate by an order of magnitude [38].

3.2 Research: Quality: Empirical Evaluations of Repair Quality

In current practice, many potential repairs, especially in security-critical domains, are subjected to a barrage
of adversarial tests to gain confidence in their correctness. We propose to subject our repairs to a similar
battery of tests to empirically evaluate their correctness. We seek confidence that the repair has not impaired
key functionality, has not introduced new vulnerabilities, has generalized to repair the defect in some depth,
and that repairs based on mistaken defect identification do not harm the system. To that end, we propose
four methods to evaluate the correctness of repairs generated by our previous technique: held-out indicative
workloads, generic fuzz testing, targeted fuzz testing, and “false positive” repairs.

The first evaluation uses a large indicative workload that is not used during the repair precess. Unless
the nature of the repair makes it impossible, the repaired program should return all of the same answers on
this workload, bit for bit, as the original program, and should do so in the same amount of time or less. The
second evaluation uses fuzz testing [65] or some similar technique to generate held-out adversarial inputs
or otherwise attack the program. The repaired program should not be vulnerable to any new attacks or
demonstrate any additional failure modes as compared to the original program. The third evaluation uses fuzz
testing or manual annotation to modify the negative test case or exploit to create similar attacks using the
same vector. For example, a remote buffer overrun exploit might be changed by inserting dummy instructions
into the payload; our repair is successful if it also defeats such mutant attacks. The final evaluation tests the
repair technique in the environment by controlling for the repair itself: additional “repairs” are generated
with normal behavior on innocuous input given as the negative test case. This simulates what would happen
in the case of an intrusion detection false positive or other misclassification of the actual defect.

7

We have performed preliminary experiments along these lines for repairs to two webservers and a web
application interpreter. We used a held-out workload of 138,226 HTTP requests spanning 12,743 distinct
client IP addresses. Figure 3 shows the results for the four evaluations. For each of the three repairs, the
deployed, repaired program effectively responded to all requests correctly (the standard deviation is higher
than the absolute number of lost requests because the systems benchmarking process is not deterministic,
and the repaired version performs better than the original on some runs; that is, any change is in the
noise). Microsoft requires that security-critical changes be subject to 100,000 fuzz inputs [47] (i.e., randomly-
generated structured input strings). We used the SPIKE black-box fuzzer from immunitysec.com to generate
100,000 held-out fuzz requests using its built-in handling of the HTTP protocol. We applied them to the
webservers before and after the repair: the “Generic” column in Figure 3 shows the results. For example,
lighttpd failed the exact same 1410 fuzz tests before and after the repair, suggesting that the repair may not
have introduced new failure modes. Similarly, we used the fuzzer to generate 10 held-out variants of each
exploit input. The “Exploit” column shows the results. For example, lighttpd was vulnerable to nine of the
variant exploits (plus the original exploit attack), while the repaired version defeated all of them (including
the original). In no case did our repairs introduce any errors that were detected by 100,000 fuzz tests, and
in every case our repairs defeated variant attacks based on the same exploit, showing that the repairs were
not simply fragile memorizations of the input.

Finally, we randomly selected three normal requests from the held-out workload to serve as false positives
and instructed the system to “repair” nullhttpd against them. False positive #3, a standard HTTP GET request,
was not repairable using our algorithm: there was no way to rule it out while satisfying a positive test case
for GET index.html. The other two false positives did lead to “repairs”: for example, #2 was a HEAD request
related to caching information, and the “repair” disabling caching, causing additional requests from clients.
However, the positive tests cases again prevent any significant impairment on the indicative workload, and
neither of the “repairs” introduced any detectable security vulnerabilities.

We hypothesize that repairs generated by our technique will not impair normal behavior, introduce new
errors, or be fragile memorizations of the negative input. Our preliminary results provide some support for
this on three programs, but much remains to be done. This research thrust will evaluate that hypothesis
directly, as well as allowing for controlled experiments with repair quality as the dependent variable. For
example, we will attempt to determine how many and what sort of positive test cases are necessary for a
high quality repair, and how much post-repair evaluation is necessary to achieve a given level of confidence
that a repair is not faulty.

3.3 Research: Scalability: Test Suite Selection for Program Repair

Program #TC Time (sec) # TC Runs

zune 100 12 7→ 10 460 7→ 106
uniq 100 62 7→ 8 715 7→ 89
look-ultrix 100 65 7→ 9 545 7→ 94
deroff 100 71 7→ 15 915 7→ 73
lighttpd 500 90 7→ 73 3580 7→ 362
nullhttpd 200 168 7→ 87 3200 7→ 201
imagemagick 145 2216 7→ 543 1715 7→ 178
leukocyte 300 5527 7→ 205 13205 7→ 362

Figure 4: Preliminary test suite reduction experimental re-
sults. The “#TC” column gives the number of positive
testcases used for the repair. The two remaining columns
list the change in performance with our technique applied.

In practice, many important programs have a
vast suite of test cases. Regression testing dom-
inates portions of maintenance and develop-
ment [79], accounting for as much as half of the
cost of software maintenance [52, 86]. While
our repair technique has been quite success-
ful at producing high-quality repairs using less
than a dozen positive test cases to encode pro-
gram requirements, we wish to scale to repair
programs with hundreds or thousands of test
cases. Since our default fitness function evalu-
ates a variant program on the entire test suite,
we propose to change how our algorithm mea-
sures the fitness of a variant.

Running test suites is an expensive propo-
sition in standard software engineering, and
many techniques have been developed to reduce the cost of testing while maintaining its benefits [42, 63].

8

We propose to investigate and adapt two techniques to the context of program repair: change impact anal-

ysis [8, 56, 81] and test suite prioritization [85, 86, 101].
In change impact analysis, program analysis techniques are used to determine which tests must be rerun

after a modification to a program. For example, if the effects of a change can be definitively localized to
module A, unit tests for module B need not be rerun. We propose to use change impact analysis on the
population of program variants we maintain: if a variant was evaluated on a set of testcases in a previous
generation, and only a few lines in it were changed in the interim, it is probably not necessary to rerun each
of those tests. In our preliminary results, the average number of statement level changes between fitness
evaluations was around two, suggesting that change impact analysis could be easily applied. Similarly,
in some cases, the fitness of a variant only changes in as few as a third of all generations [37, Fig.1],
suggesting that up to two-thirds of tests may be run unnecessarily. We thus propose to extend our internal
representation to explicitly track previously-established test case results on a per-variant basis. We can then
use a conservative change impact analysis to invalidate the results and rerun the tests as necessary. This
can reduce repair times without changing the resulting repair. In essence, change impact analysis will allow
us to soundly cache test case evaluation results, decreasing the number of tests that need to be rerun.

In test suite prioritization, a subset of the available test suite is run in a specified order with the typical
goal of detecting defects or gaining confidence as quickly as possible. Existing techniques range from greedy
approaches (e.g., choose test cases in order of decreasing coverage) to time-aware approaches based on
knapsack solvers [101]. The structure of our repair problem provides an advantage not normally available:
the subset of tests used on any particular variant need not be perfectly indicative, as long as any candidate
repair is subject to the entire test suite. We thus propose a basic hybrid algorithm in which we avoid
expensive coverage calculations and instead choose a random subset of the test suite each time a variant is
evaluated. A variant that passes every test in that random subset is then evaluated against the entire test
suite. We have implemented this technique, and preliminary results suggest that it is a slight improvement
over existing approaches for our domain, but, more importantly, that it can dramatically reduce the total
time taken to find a repair. On eight different programs and over 1500 test cases, our preliminary approach
reduces the total number of test case evaluations by 90% on average; Figure 4 shows these results. The
figure also includes the cost of running any candidate repair that passes its subset of tests on the entire test
suite. Programs that were previously the slowest to repair show large gains: leukocyte, with 300 test cases,
takes three minutes, instead of ninety, to discover a viable repair.

3.4 Research: Scalability: Repairing Poorly-Localized Faults

Figure 5: Program repair time scales with
weighted execution path size (averaged over 100
runs, note log-log scale).

Running the test suite to evaluate program variants dom-
inates the running time of our repair algorithm. Since
we apply mutations only along the weighted path (our
approximation to where the fault may be located), the
length of that path controls the size of state space of
nearby programs explored to find a possible repair. A
large weighted path that contains many irrelevant state-
ments will result in the generation of many fruitless vari-
ants, each one of which must be run against the test suite
before being discarded.

Figure 5, plots weighted path length against search
time, measured as the average number of fitness evalua-
tions before the initial repair is discovered. On a log-log
scale, the relationship is roughly linear with slope 1.26
(90% confidence: [0.90, 1.63]). Although this prelimi-
nary work is not conclusive, the plot suggests that search
time may scale as a power law of the form y = axb where
b is the slope of the best fit line (1.26) and b = 1 would indicate that search time grew linearly. This suggests

9

that search time grows as a small polynomial of the weighted execution path and not as an exponential.
We thus propose to scale our technique to repair more programs by taking advantage of existing techniques

from the domains of fault localization and path slicing. In this context, fault localization takes a program
and a defect and returns a subset of locations in the program related to the defect [39, 40, 13]. For example,
if a program has a locking bug and no locking behavior ever depends in any way on the value of a variable x,
then statements that only assign to x can be removed from consideration. Recent advances may dramatically
reduce the size of the weighted path, and thus the search space. For example, Jhala and Majumdar report that
the largest of 313 paths from the gcc Spec95 benchmark can be sliced from 82,695 nodes to 43 nodes [50].
Unfortunately, many localization techniques cannot be applied directly without additional input: Jhala
and Majumdar require a single program point that encapsulates the error, while Ball et al. require a
function mapping program states to success or failure judgments. In essence, many such techniques require
foreknowledge of what the fault is before they can narrow down what is relevant to it. If the program we are
repairing fails the negative test case because of a null pointer dereference, division by zero, assertion failure,
or other precise exception, we can use that program point or expression directly.

In general, however, the program will fail the negative test case by producing the wrong output, rather
than by crashing in an obvious manner. While we do not know the cause of the bug, we pay no penalty
beyond time for an incorrect guess. We can thus use fault localization as a form of hypothesis testing:
rather than attempting to holistically repair the program as a unit, we can test the individual hypotheses
that various statements are the root cause. If the size of the weighted path is P , in the worst case we
can guess each of the P locations in turn as an important program point, apply fault localization, and
attempt a repair. If the wrong program point was chosen, the repair attempt will fail. Back-of-the-envelope
calculations suggest that this approach will reduce overall repair times in common situations. For example,
if the running time of our algorithm is P b and fast fault localization reduces path length by a factor of L,
then this approach will decrease the overall running time when P × (P/L)b < P b, i.e., when P < Lb. For
L = 1000 [50] and b = 1.26 (Figure 5), the approach could be useful for P < 6000, a path size almost twice
as long as the longest we have encountered to date.

4 Proposed Experiments

Each of the hypotheses in the proposed research above has an associated set of experiments. The list below
serves as a basic experimental plan; we will adapt the plan as the research progresses. The preliminary work
published this year [37, 70, 109] will serve as a baseline algorithm to which new repair techniques can be
compared. The programs described in Figure 2 serve as a set of default benchmarks, although we will
continually seek out new defects to repair. The number of seconds and test case evaluations required to
produce a repair, as well as the evaluations described in Section 4.1, will serve as default metrics by which
repairs or repair techniques can be evaluated. For example, a repair produced by interleaved fault localization
can be compared directly to any repair produced by the baseline algorithm using those metrics. Beyond
shared use of the Empirical Evaluation research thrust, all of the proposed experiments are independent,
contain their own local metrics, and can be pursued in any order.

4.1 Experiments: Quality: Empirical Evaluations of Repair Quality

This research thrust proposed four key evaluations: held-out indicative workloads, generic fuzz testing,
targeted fuzz testing, and “false positive” repairs. In addition to using those metrics as described in our
preliminary work (see Figure 3), we further propose an additional automatic hardening scenario related to
defects and program revisions. We will iteratively apply the repair technique to past versions of programs,
creating synthetic diversity [71, 111] and preemptively defending against unknown defects.

Consider a program that encountered a defect (e.g., a security attack) six months ago. We propose to
take the program and its test suite from nine months ago and iteratively repair it with no knowledge of the
held-out six-month defect. If a sequence of repairs to a far-past version of a program causes it to become

10

immune to a near-past bug, we gain confidence that iterative repairs to a present program may cause it to
become immune to future bugs.

Our automated repair approach requires a negative testcase or other notion of the defect to be repaired.
For this evaluation scenario we can use any software quality metric as a signal. We propose to evaluate
FindBugs defect reports [46] and fuzz testing [65]: given a program with a test suite and no known bugs, we
will treat any error report from a bug-finding static analysis or any crash when the program is applied to
randomly-generated input as a defect to be repaired. In addition, we propose to co-evolve the attack and the
repair. Four of the six security attacks in Figure 2 were presented as C programs that, when compiled and
run, attacked a running server. We propose an iterative process in which the program is evolved to resist
the attack, and then the attack is evolved until it can again defeat the program (simulating some parts of
the standard security “arms race”).

While this technique is easily to parallelize and CPU time is relatively cheap, the computational burden
may prove prohibitive. In essence, the technique fails if it would take two weeks of automatic hardening to
make a program immune to an attack that will arrive in one week. However, it is also more general than
standard diversity techniques such as address space randomization [88] or instruction set randomization [15,
16, 48] because it can produce new content or control flow, and thus potentiallydefeat a larger class of attacks.

We hypothesize that in the majority of cases where our technique can repair a defect at all, it can be
used to automatically harden a program against that defect in less time than it took for the defect to arise
naturally. We will select defects at random from projects with linked bug and source code repositories, or
otherwise consider defects for which we know repairs are possible (see Figure 2). For each defect, we will
iterate over multiple possible time windows (i.e., starting X weeks before the defect with a budget of X
weeks for hardening) and run multiple random trials for each window, measuring the percentage of hardened
variants that ended up immune to the held-out bug.

Whenever possible, repairs and repair techniques from other research thrusts will be evaluated using time
and test cases required to produce a repair, held-out indicative workloads, generic fuzz testing, targeted fuzz
testing, and “false positive” repairs, and the automatic hardening scenario.

4.2 Experiments: Quality: Guiding Repairs with Formal Specifications

We can evaluate the proposed research against the baseline algorithm, which does not consider specifications.
When partial correctness specifications are present, one additional metric is the chance of generating a repair
that fixes the bug while respecting all available specifications. A second metric is the time taken to find a
repair that fixes the bug while respecting other specifications. We hypothesize that incorporating knowledge
of specifications into the repair process will allow for the construction of specification-conformant repairs
in at most as much time as it takes the vanilla approach to generate non-conformant repairs (e.g., since
querying an automated theorem prover takes less time than running a test suite to to rule out a candidate
repair).

Additional evaluation will be required if specification mining is used to guide program synthesis to fashion
correct-by-construction repairs. First, the combined technique is unlikely to apply to all repairs: if either
the specification mining or the synthesis fails, no repair will be generated. We will measure the fraction of
instances for which this occurs on all available repairable programs, and characterize the situations under
which the technique can succeed. Even if a candidate repair is produced that passes all available tests,
a lack of precision in the specification miner may result in a repair with unintended side-effects. We will
evaluate the repairs using the metrics described in Section 4.1. We hypothesize that an approach that
combines specification mining (or manually-added partial correctness specifications) with program synthesis
can produce repairs without unwanted side-effects for certain classes of programs.

4.3 Experiments: Scalability: Test Suite Selection for Program Repair

We hypothesize that we can dramatically reduce the number of test case evaluations required to automat-
ically repair multiple classes of defects, even in the presence of large test suites. Our primary metrics are

11

the average number of test case evaluations and seconds required to obtain a successful repair. Change
impact analysis should apply to any of our existing repairs without changing the behavior or repair quality;
instead, it will reduce the number of test cases run at the expense of additional computational overhead.
We hypothesize that in that vast majority of cases, the overall repair time will be reduced, and we will
categorize those cases for which the technique is ineffective. For test suite prioritization, we will continue our
preliminary experiments, and additionally measure the efficacy of hybrid test selection on manually-created
and automatically-generated test cases.

4.4 Experiments: Scalability: Repairing Poorly-Localized Faults

We hypothesize that for a large class of repairs (in particular, for the largest weighted paths we have
encountered), fault localization can be used in conjunction with automatic program repair to reduce the
total repair time. We will evaluate this hypothesis directly, first on programs with crashing failures (e.g.,
failed assertions) to which fault localization can be directly applied, and second when fault localization and
program repair are used to test fault hypotheses. The key metric will be the average number of fitness
evaluations and total time required to produce a repair of equivalent quality (although since both will use
the same test suite, a large quality difference is not expected).

5 Background

Related work falls into four broad categories: research to improve manual debugging, efforts to recover from
defects at run-time, automatic repairs for particular defects, and genetic programming.

In general, debugging involves locating and repairing a defect by hand. Recent advances include replay
debugging [3], the analysis of postmortem crash dumps [62], and cooperative bug isolation [59] In all of these
approaches, although additional information or flexibility is presented to the developer [118], the full repair
must always be generated manually.

Demsky et al. [30] present a technique for data structure repair. Given a formal specification of data
structure consistency, they modify a program so that if the data structures ever become inconsistent, they
can be modified back to a consistent state at runtime. Their technique does not modify the program source
code in a user-visible way. Instead, it inserts run-time monitoring code that “patches up” inconsistent state
so that the buggy program can continue to execute. Finally, their technique only targets errors that corrupt
data structures — it is not designed to address the full range of logic errors. Many of the programs we have
repaired or propose to repair are outside the scope of their technique.

Rinard et al. [83] present a notion of failure-oblivious computing, in which compiler-inserted bounds
checks discard invalid memory accesses, allowing servers to avoid security attacks. Boundless memory blocks
store out of bounds writes for subsequent retrieval for corresponding out of bounds reads. Techniques also
exist for eliminating infinite loops. The overhead of these approaches varies, memory errors are the primary
consideration, and a localized patch is not produced. Similarly, Smirnov et al. [92, 93] automatically compile
C programs with integrated code for detecting overflow attacks, creating trace logs that contain information
about the exploit, and generating a corresponding attack signature and software patch. This technique is
restricted to buffer overflows and introduces as much as 150% run-time overhead by adding additional code
into the original source program. In contrast to both of these approaches, we propose to produce explicit,
low-overhead patches for multiple types of defects.

Keromytis et al. [90] propose a system to counter worms through automatic patch generation. Their
technique requires an a priori enumeration of possible attack and repair types, and is heavily dependent
on an intrusion detector to identify vulnerable buffers. While their work is theoretically applicable to more
than one type of security vulnerability, they focus entirely on the detection and repair of buffer over- and
under- flows and envision handling additional vulnerabilities by crafting new repair modules for specific
vulnerability types. A key distinction between our proposal and the work of Keromytis et al. is that our
approach does not require advanced knowledge or profiles of vulnerability types to craft a repair.

12

6 Broader Impact and Education Plan

The overall goal of this work is to reduce the cost of defect repair and thus improve software development.
The proposed research must thus be accompanied by efforts on additional fronts over the next five years.
First, we must mentor and educate upcoming researchers and engineers. This includes the design of new
courses as well as efforts to involve members of varied backgrounds in the research. Second, we must make
it easy and compelling for current developers to make use of the technology we develop and the practices
we propose. We will demonstrate the utility of our work through case studies and freely-available tools
instantiating our techniques.

6.1 Education and Mentoring

Graduate Curriculum. The University of Virginia includes some of the world’s leaders in the fields of
Software Engineering, Sensor Networks, Virtual Execution Environments, Graphics, Modeling and Simula-
tion, and Security. We will work closely with these researchers in the development of tools and techniques for
software repair that are relevant to their domains. We will encourage this collaboration directly by extending
the graduate Programming Languages course to cover recent cross-domain advances. In addition, we believe
that the attractive force of faculty collaboration is mediated by particles known as graduate students: we will
require graduate class projects that integrate programming language analyses and techniques with software
from other domains. For example, the leukocyte program used in preliminary work is the result of such a
collaboration with local architecture researchers who are using it to investigate manycore coprocessors [20].
Similarly, we have begun to work with local graphics researchers on “repairing” vertex and pixel shader
programs to improve their efficiency, possibly by altering non-human-discernible visual output. This sort of
collaboration gives the students firsthand experience with the challenges of analyzing real-world code, and
those challenges are often the greatest spurs to new techniques.

Undergraduate Curriculum. We will redesign the undergraduate Programming Languages class so that
it includes recent techniques for improving software quality via language-based approaches. Relevant tech-
niques include using CCured [25], Cyclone [51] and Tal [66] to produce low-level systems software safely,
as well as more recent techniques like Mace [53] for building distributed systems and StreamIt [100] for
building streaming programs. In addition, the course will give examples of the transition from research to
practice, such as that of Pizza into Java Generics [75]. These changes are near and dear to our heart, as
the current undergraduate PL class is somewhat of a cleverly-disguised compilers course, and since under-
graduate compilers is also offered, plenty of scope exists for injecting language-based techniques. We will
also design a new undergraduate course:

Course Development: Program Analysis Tools (Undergraduate). This class will cover
techniques and tools for analyzing software, giving students a grand tour of many modern techniques.
Software model checkers [11, 22, 43], bug-finding tools [23, 28, 32, 41, 46, 107], and memory management
aids such as Valgrind [69] will play key roles. In addition, invariant detectors [36, 72] and specification
miners [4, 5, 33, 108, 110] will be emphasized, especially as they relate to trusted program repair
(Section 3.1). Students will begin by experimenting with malware and attacks, from fuzz [65] to code
injection, to motivate the need for reliable and secure programs and for the empirical evaluations in
Section 4.1. The course lectures will cover the techniques the tools are based upon as well as comparisons
of their domains and relative strengths and weaknesses. The course project will ask students to use one
of the tools presented in class to find a vulnerability in a large open-source program, devise an attack
against that defect, and then design a defense against the attack. As this project progresses, we will
incorporate an assignment to evaluate generated repairs for such defects.

Diversity. We are continually interested in mentoring undergraduates by actively involving them in the
research program, and the three undergraduates in this research group reflect that. We have been particularly

13

involved in encouraging women to consider and pursue computer science at the graduate and undergraduate
level. We have worked with the local chapter of the ACM Committee on Women in Computing (ACM-W) to
help it transition from involving mostly graduate students to incorporating undergraduates as well. Meetings
that we sponsored and advertised drew in eleven additional undergraduate women on average, doubling local
participation.

In addition, we have used unrestricted industrial funding (augmented by the award money described in
Section 2.4) to create an annual merit scholarship for undergraduate women interested in computing and
communication [105]. The scholarship specifically targeted undergraduate women who might not otherwise
have considered computer science. In its three years the scholarship has received dozens of application
materials covering five U.S. states (IN, MD, PA, TX, and VA) and multiple non-CS academic disciplines
(e.g., Environmental Science, International Studies, Multimedia Instructional Design). Each applicant was
required to consider and describe how computer science could relate to her field and future. The scholarship
prize includes stipend money to support undergraduate research, and winners are encouraged to work on
undergraduate research. The scholarship was sufficiently popular that the department chair was willing
to provide matching funds, increasing the number of undergraduate women we are able to recognize for
excellence and encourage to consider and pursue computer science.

Mentoring. We will involve undergraduates heavily in pursuing this research agenda through undergrad-
uate thesis projects. Much of the preliminary work for this project was carried out by undergraduates. For
example, Ethan J. Fast and Briana Mae Satchell produced all of the data in Figure 4. Previous undergraduate
researchers in the group have published and gone on to top-tier CS grad schools (e.g., Nicholas Jalbert [49]
to Berkeley in ’08, Elizabeth Soechting [94] to Wisconsin-Madison in ’09). We are also interested in working
with undergraduates officially advised by other faculty members, and that work has led to publication (e.g.,
Adrienne Felt [34]).

6.2 Case Studies and Tools to Promote Adoption

In a large sense, the overarching goal of this proposal is to encourage the adoption of our automated repair
technique by making it scale to rapidly produce trustworthy repairs. We thus believe that developers will be
more likely to adopt this technique after seeing the generated repairs vetted multiple ways, or after seeing
the “automatic hardening” scenario preemptively repair an unknown bug or a repair automatically validated
against an existing specification. We have already made our tools available to researchers on demand, and
plan a general open source release in the near term. We have a track record of successfully making tools
available in projects like CCured [68] and Cil [67]. There is thus no secondary plan to promote adoption:
it is an integrated goal.

7 Results from Prior NSF Support

Westley Weimer. CT-ER: Automatic Identification and Protection of Security Critical Data (PI: D.
Evans, CNS-0627623). This completed project aimed to develop a general and practical defense against
future non-control data attacks by automatically transforming programs to protect critical data. It led to
multiple publications [19, 34, 45, 106] as well as national media attention directly mentioning our female
undergraduate researcher [9, 102]. CT-T: Practical Formal Verification By Specification Extraction, (PI: J.
Knight, CNS-0716478). This ongoing project aims to develop a new approach to formal verification in which a
mid-level specification is extracted from low-level program annotations. The program is shown to implement
the mid-level specification and the mid-level specification is shown to imply the high-level specification; the
resulting two-step verification process is more practical than a monolithic approach [21, 115, 116].

In addition, the PI has a pending NSF grant SHF: Medium: Collaborative Research: Fixing Real Bugs

in Real Programs Using Evolutionary Algorithms (CCF-0905373; Co-PI: S. Forrest, submitted 10/31/2008).
That pending grant proposes to investigate issues such as new genetic algorithm operators, incorporating

14

anomaly detection to point out defects, conducting human studies to evaluate repairs, collecting templates of
likely repairs, and repairing multithreaded programs — none of which are proposed here. The two proposals
focus on different aspects of the broad realm of automated program repair, and none of the research described
here is mentioned in the other proposal except for the study of test suites (which merits only two paragraphs
there, and is explicitly listed as not in the core of that research proposal).

8 Summary and Long-Term Vision

If succesful, the proposed research will reduce the time and effort gaps between finding and fixing software
defects by making automatic repair feasible and trustworthy for large systems. Currently, although tools
such as delta debugging and fault localization exist, program repair remains a largely manual process. We
propose to lift much of that burden.

The research and implementation work proposed here will form the core of the dissertations of two
students. One will focus on repair quality, the other on scaling automated repair to real systems. We can
thus make progress on each front independently, and allow the students to work together while keeping
separate, clearly delineated goals.

Year 1. Incorporate collaboration into grad course. Implement empirical evaluation metrics (Section 4.1).
Release public tools.

Year 2. Begin research and design repair with formal specifications (Section 3.1) and test suite selection
for repair (Section 3.3).

Year 3. Evaluate formal specification (Section 4.2) and test suite selection (Section 4.3) thrusts. Begin
work on automatic hardening (Section 3.2) and interleaving fault localization with repair (Section 3.4).

Year 4. Develop program analysis tools undergrad course. Evaluate automatic hardening and fault local-
ization thrusts (Section 4.4).

Year 5. Integrate program repair into undergrad class. Finish evaluating formal specification, test selection
and localization research thrusts using all empirical metrics including automatic hardening (Section 4);
conclude case studies.

The proposed research touches on a number of challenging areas and will be a strong source of research
problems for years to come. Software quality is a key problem that affects most computing disciplines. We
have more defects than we know what to do with [7], many of them go unfixed [58], and both repair and
the consequences of failing to repair carry a large cost [14, 112, 82, 73]. Software maintenance is dominated
by such bugs [79], which traditionally require developer time and effort to fix [80, 44, 98]. We envision a
future in which automatic bug repair is a trusted, scalable reality for many classes of defects. The proposed
research will take tangible, concrete steps toward the ultimate goal of automating software maintenance.

15

