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Project Summary: The world we live in is composed out of mixed signals. It is practically impossible to 
effortlessly obtain a clean recording of speech, music, environmental, mechanical, underwater, or bio-
medical sounds. Because of that, we often resort to source separation and mixture analysis methods that 
allow us to enhance a signal in order to facilitate further processing. A very successful approach to this 
type of processing makes use of training data that can assist in the extraction of a source or its parame-
ters. However, for these methods we do not have algorithms that can scale to “big data” levels and are 
constrained to use small data sets that do not allow us to take advantage of extensive training. The goal of 
this proposal is to develop the foundations for efficient single-channel mixture-analysis, and to apply 
them on large-data problems. More specifically, what is proposed is a fundamental rethinking of popular 
non-negative factorization methods, taking advantage of recent developments in manifold structure, de-
flation, hashing and quantization approaches, which will for the first time enable the application of these 
techniques on both large-data and computation-constrained settings. We will focus on two fundamental 
algorithmic improvements: efficient model building from prohibitively large data sets, and tractable algo-
rithms for deploying very large source models. Our contributions are also applicable to a large family of 
related models in wide use in acoustical signal processing (e.g. non-negative dynamical models, N-
HMMs, convolutive decompositions, etc.), and will also enable them to operate in “big data” regimes, 
something that is currently impractical. We will validate our work with applications operating on large 
collections of recordings and performing popular mixture signal tasks such as source extraction, recogni-
tion of concurrent sources, and parameter estimation from noise-contaminated data. 

Intellectual Merit: Single-channel source separation has long been a research area driven by accuracy 
metrics. However, with an abundance of available data, we see the additional need for efficiency. This 
work will undertake the first systematic study of algorithmic efficiency in this critical new “big audio da-
ta” context. It will draw from recent developments in efficient data processing and combine them with 
traditional signal processing and linear algebra primitives that are in wide use today. It will in effect an-
swer two important questions. First, what are the algorithmic principles that will enable mixture-signal 
processing on a “big data” scale, and make it accessible to resource-constrained devices? And second, 
what new regime of results can we achieve if we use methods that can train on large-scale data and make 
use very large source models? These are both unexplored domains in acoustic signal processing, and hold 
the promise of validating the effectiveness of large-scale data usage in yet another research area. 

Broader Impact: Being able to process mixed signals is a central process in our day-to-day life. It means 
we can design speech recognizers that are truly noise-invariant; medical sensors that require vastly less 
prep time; hearing aids that reliably allow the wearer to navigate in acoustically difficult environments; 
multimedia databases that can index huge, noisy audio assets quickly and correctly; surveillance systems 
that can track simultaneous targets, etc. Being able to do so with efficient processing models will translate 
to increased applicability of such technology to real-life problems. Additionally, and due to the funda-
mental nature of this work, these new models will also apply to other time-series such as sonar, commu-
nications, and bio-signals and are expected to be of broad use to these communities as well. 

Keywords: Audio signal processing, source separation, audio recognition
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Project description 
Introduction 
The ability to work with mixtures of signals is a necessity in today’s acoustical systems. For many real-life 
applications we are presented with a target signal alongside interfering sources. This is the norm for a 
wide-range of fields such as speech processing, underwater acoustics, music information retrieval, bioa-
coustics, mechanical machinery monitoring, etc., where desired information is buried inside a mixture of 
signals. When presented with single-channel mixtures, a popular way to analyze them involves the use of 
a training set which represents the statistical characteristics of the target sources in the mixture. Recent 
advances have resulted in powerful mixture analysis tools, but they also command significant computa-
tional complexity. This complexity necessitates more processing power and time, and has hindered our 
exploration of big-data scales for such methods. Motivated by this problem, the main issues that we will 
address in this project are two: a) the development of efficient computational approaches that enable the 
deployment of single-channel mixture models on large amounts of data, and b) the first study that charts 
the effects of large-scale training and models on such methods. 

Background 
Single-channel acoustical source separation is the problem of extracting a target signal from a single-
channel recording that contains the superposition of multiple signals. This is a very common problem 
that one finds in a wide breadth of applications, in which we might want to extract a signal (e.g. speech 
from noise, submarines from ocean clutter), or maybe just some of its parameters (e.g. a phoneme se-
quence, or notes played in a music piece). Both of these problems have been historically addressed using 
algorithms that perform denoising, source separation, or otherwise include some level of mixture-
invariance. Although there is a considerable amount of such research in general (e.g. multichannel-
systems using array methods, or domain-specific methods based on parameterizations), here we will fo-
cus on the general single-channel case for acoustical signals due to its wide applicability and the demand-
ing computational complexity that it commands. 

Extracting a target source from a single-channel recording is an ill-defined problem. More specifically, for 
a given mixture signal m(t) = x(t) + n(t) that is comprised out of a target signal x(t) and a set of interfer-
ences n(t) we wish to extract the only target signal by itself. The main obstacle in this problem is to speci-
fy the target signal so that we can isolate it. Unlike multi-channel methods, there is no spatial domain or 
cross-sensor statistics to help us guide an algorithm to the target source. Thus, the majority of work on 
this problem has been centered on finding a way to effectively define the target signal. 

During the last decade a particularly effective approach for analyzing single-channel mixture acoustical 
signals has been through the use of Non-Negative Factorizations, and their probabilistic formulations 
(Virtanen et al.). These methods construct an additive set of dictionaries for describing sounds and use 
these as models that specify what to extract from a mixture. The most basic of formulation starts with 
constructing a model of the target and interference signals using training data. For a specific type of sig-
nal (e.g. speech) one can learn a speech-specific dictionary using multiple clean speech signals, and like-
wise do the same for, say, the interfering street ambience. Once this training data is collected it is trans-
formed to an energy frequency domain representation (such as a magnitude or power short-time Fourier 
transform) and represented as matrices Fi whose elements fω,t contain an energy measure at frequency ω 
and time t, for each source i. For each source, a spectral dictionary Wi is learned via the decomposition: 
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where 
  !
!+
M×N  is the space of non-negative M by N matrices (i.e. matrices whose elements are all greater or 

equal to zero). This is known as the Non-Negative Matrix Factorization model (Lee and Seung 1999). The 
approximation in equation (1) can be defined in various ways, but in practice it is often expressed in 
terms of a modified Kullback-Leibler or the Itakura-Saito divergence (Lee and Seung 2001, Févotte and 
Idier 2011). Alternatively one can use a parameterized form employing Bregman divergences (Cichocki 
and Amari 2010), which includes the previous measures as special cases. Another popular option is the 
Euclidean distance, however in practice this results in significantly lower quality performance for acous-
tical source separation problems and will be explicitly avoided in our work. Depending on the selected 
divergence, the estimates for W and H will be obtained using an iterative process that we will discuss 
later on. 

This decomposition approximates the time-frequency distribution of a certain type of signal using spectra 
constructed from a spectral dictionary Wi, and a corresponding set of dictionary element activations Hi. A 
key element of this decomposition is the parameter non-negativity. Due to that, the approximation of any 
input will have to be based on a superposition of spectra and will not make use of cross-cancellations. 
This turns out to be a crucial element as compared to other types of decompositions, one that forces the 
discovered spectra and activations to correlate better with our cognitive representations of audio mix-
tures (we think of sounds as an additive-only combination of elements, with no concept of removing 
parts to explain what we hear). Given adequate training data (usually in the order of a minute or so), one 
can learn a spectral dictionary that can adequately describe other recordings of the same type of sound. 
That means that a well-trained dictionary for a specific speaker, or a musical instrument, or an environ-
mental sound will often be good enough to describe other instances of that type of sound. 

When confronted with a matrix M that contains an energy time/frequency representation of a mixture 
containing previously known sources (i.e. sources for which we have a set of Wi’s), we can use the same 
model to explain this mixture in terms of the contribution of each known source, using: 
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Where now, W1 and W2 are fixed and known from a preceding training stage and H1 and H2 can be esti-
mated using the same process as above (note that this equation is the same model as in equation (1), but 
this time one of the factors – the W’s – is known). Upon estimation of the two activation matrices H, we 
can approximate the observed mixture as a sum of W1 ·H1 and W2 ·H2, each of which will describe the 
time/frequency energy of each of the two sources as defined by their dictionaries. These two representa-
tions can be inverted back to a time-domain signal as described in (Virtanen et al.), and will result in sep-
arating the two sources in the original mixture. A necessary condition in order to have a successful sepa-
ration is that the two dictionary subspaces do not overlap significantly. In practice, even when separating 
speech-only mixtures (with both dictionaries representing speech, but trained on different speakers), we 
see a good enough performance so this isn’t a significant limitation. In real-life, we might not know all the 
sources that make up a mixture, in which case we can use a semi-supervised formulation (Smaragdis, Raj, 
and Shashanka 2007) that permits us to have only one dictionary (which can describe either the target 
source, or the interferences). An example of this process is shown in Figure 1, wherein a hydrophone re-
cording of a whale is extracted from a noisy ocean recording. 
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This model also allows us to perform parameter estimation on a source that is part of a mixture. For ex-
ample, the sum of the activation values in Hi corresponding to the i-th source can be used to infer that 
source’s amplitude in a mixture. Additionally, if we have training data that is annotated, we can associate 
each learned dictionary element (each column of W) with a set of parameters, e.g. pitch, phoneme, class 
type, etc. Using the principles described in (Smaragdis 2011), one can estimate these parameters for a 
source that is observed inside a mixture, something that has been put to use for a wide range of problems, 
such as pitch estimation on multiple instruments in music, speech recognition of simultaneous speakers 
and sound recognition from dense mixtures (Nam, Mysore, and Smaragdis 2012, Smaragdis 2011, 
Smaragdis and Raj 2012). What is very important in this case, is that one does not need to perform source 
separation and then run pitch tracking on its output. This is known to be a suboptimal approach in which 
source separation artifacts can interfere with any subsequent estimates. By using the aforementioned es-
timation methods, one can truly perform analysis on mixture signals directly in a single step, something 
that is highly desirable in many problems that involve acoustic analysis. 

 
Figure 1. An example of source separation in an underwater sensing context. Recordings of whale 

songs (top left) are used to learn a dictionary of whale sounds (top right). Given an unseen 
mixture containing a new whale song contaminated with excessive sea clutter interference 
(bottom left) we can isolate the whale components (bottom right) by fitting the learned 
whale components and simultaneously estimating the interference source (see (Smaragdis 
et al. 2014) for details). 

This approach of operating on mixtures using non-negative modeling was originally introduced by the PI 
and has since been put to considerable use in the audio processing community. There are by now thou-
sands of papers on this representation, and it is being used commercially with critical acclaim†. Further 
developments in this area have resulted in more elaborate models that can better model more signal at-
tributes. These include the probabilistic and Bayesian formulations (Hoffman 2012, Shashanka, Raj, and 
Smaragdis 2008), convolutive and shift-invariant models (Smaragdis 2007), Hidden Markov Model for-
mulations (Mysore, Smaragdis, and Raj 2010), dynamical models (Mohammadiha, Taghia, and Leijon 
2012), and tensor formulations (Cichocki, Zdunek, and Amari 2007), amongst many others. 

This family of acoustical signal processing methods is also closely related to many similar models from 
other fields. Most notably, the factorization in equation (1) can be related to dimensionality reduction 
methods, sparse learning and compressive sensing. Models like Principal Component Analysis (PCA) 
and Independent Component Analysis (ICA) (Oja and Hyvarinen 2000) are very closely related, but have 

                                                
† E.g. the Audionamix tools, used in the production of Hollywood movies, and Adobe Audition, which is used by 
million of audio engineers worldwide. 
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eventually been deemed inappropriate for mixture analysis since they make use of cross-cancellation to 
reconstruct the inputs. Additionally, their results are not as easily decipherable as with the non-negative 
models. Along the same lines is research on sparse coding and compressive sensing (Baraniuk 2007, 
Donoho and Tanner 2005), whose models are also using a form similar to equation (1). Just as with PCA 
and ICA, these models excel at approximating the input, but result in non-intuitive cross-cancelling de-
compositions that have not been found to be as useful for acoustical processing applications (made worse 
by the lack of early research on dictionary learning, and the inappropriateness of using the Euclidean dis-
tance cost function). Along the same lines, random projection methods have not found much success in 
acoustic signal processing. More similar is work has taken place with tensor models (Sidiropoulos and 
Kyrillidis 2012, Cichocki, Zdunek, and Amari 2007), which in many cases embraces non-negativity and is 
also flexible enough to accommodate the divergence functions that seem to work better in such problems. 
Finally, there is also a strong connection to the topic modeling literature (Hoffman 2012, Blei, Ng, and 
Jordan 2003). Especially though the probabilistic formulations of non-negative models, e.g. (Shashanka, 
Raj, and Smaragdis 2008, Hoffman 2012), one can see a very similar structure in which the dictionary and 
the activations are interpreted as probabilities. In some cases, models from these two areas can be theoret-
ically identical, although there is significantly more work in the acoustical processing domain to address 
signal-specific attributes (e.g. Markov properties, smoothness constraints, etc.). Finally, non-negative de-
compositions have also been examined in the algorithms literature (Arora et al. 2012), where many inter-
esting (and very efficient) strategies have been developed. Unfortunately, these approaches use a Euclid-
ean distance cost function that is known to be suboptimal for acoustics applications and does not help in 
resolving many of the issues presented herein. 

The problem 
Despite the efficacy and success of non-negative representations, these methods do not scale well compu-
tationally. They are still constrained to workstation-level computing and are applied on relatively small 
data sizes. This not only precludes their use on low-power devices, but also hinders our exploration of 
their behavior when trained and tested on large data collections. As part of this proposal we will develop 
the necessary computational framework to allow the application of such methods on large data sets, and 
enable the exploration and better understanding of the effects of such large-scale analyses. 

To appreciate the involved complexities, consider the computational requirements of these models. For 
the factorization model in equation (1) and using the modified KL divergence to measure fit, we need to 
employ the following iterative computations to progressively refine our current estimates of W and H: 

 

   !!!

V = F⊘W ⋅H!!!!!!
Wnew =W⊙ V ⋅H⊤( )
Hnew =H⊙ W⊤ ⋅V( )

  (3) 

Here, the symbols  ⊘  and  ⊙  denote element-wise division and multiplication respectively. In practice 
one needs to repeat the above computations a few hundred times to obtain stable dictionary and activa-
tion estimates. For a large input matrix F this implies a considerable number of floating point operations. 
For example, a 1023 by 10,000,000 F matrix corresponds to about 16 hours of high-resolution speech, 
which means that for an order K = 100 model we would be employing more than six TFLOPs for each 
iteration. If one were to consider large corpora that contain content in the order of days or months (e.g. 
telephone conversations, oceanographic recordings, music archives, battlefield communications), clearly 
these methods become impractical or even intractable. Alternative approaches include other optimization 
schemes (Kim, He, and Park 2014), but they still exhibit prohibitive levels of computational complexity. 
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One possible approach to address large inputs is based on online methods (Lefevre, Bach, and Févotte 
2011, Duan, Mysore, and Smaragdis 2012). These approaches operate on short sliding windows over the 
input matrix, and accumulate results in order to approximate a factorization on the entire matrix. This 
makes online processing feasible, and removes some of the bandwidth constraints when dealing with 
large inputs. However, the computational complexity of these methods is on par with batch approaches, 
while exhibiting a noticeable loss in estimation accuracy. 

Keeping the above problems in mind, we will focus on a set of novel algorithmic developments that will 
allow us to address the efficiency issue. The goal is not only to gain efficiency for processing of large data, 
but also to make such methods available on embedded and low-power devices. 

Research plan 
Our research plan is comprised out of three main components. One of these addresses the issue of rapid 
dictionary learning when confronted with large data sets, the other addresses the issue of efficiently de-
ploying a system that uses a large dictionary, and the third one considers the application of these find-
ings on the much wider array of related algorithms that have been developed in this field. In the process 
of investigating some important theoretical underpinnings of these models we will perform the first in-
vestigations of the effect of large-scale training on the performance of mixture analysis models. 

Component I: Enabling Rapid Dictionary Learning 

Problem: A considerable pain point with non-negative models relates to the rank of the decomposition. 
Practical models could use K = 50 to 500 dictionary elements that, due to the nature of all current algo-
rithms, have to be estimated simultaneously. This creates a problem, since in many situations the optimal 
value of K is not known advance and one needs to perform multiple factorizations for different values of 
K until a satisfactory model is found. 

Proposal: For this part of our work we will address the issue of rapidly building non-negative libraries. 
In doing so, we will advance the state of the art in efficient dictionary building, and we will examine the 
benefits of learning dictionaries from large acoustic data sets – something that has not been feasible so far. 

Approach: A novel approach to simplifying dictionary learning is using a deflationary approach, in which 
only one component is extracted at a time and one can iterate until a desired level of performance is 
reached. Such models have been used in other forms of linear decompositions, e.g. with the PCA/SVD 
and ICA (Brand 2002, Oja and Hyvarinen 2000) and also considered for non-negative factorizations in 
(Biggs, Ghodsi, and Vavasis 2008, Gillis 2011). Unfortunately, the non-negative model approaches do not 
necessarily offer a concrete computational advantage, and are developed using a Euclidean distance cost 
function that is known to be suboptimal for acoustical signal applications. 

Our preliminary investigations have produced an efficient deflation method that is efficient and appro-
priately tailored for acoustic processing by optimizing a cost function using the β-divergence (a parame-
terized divergence form (Févotte and Idier 2011) that can take the form of both the Kullback-Leibler and 
Itakura-Saito divergences according to the value of β). This model is based the following optimization: 

 

  !!! 

argmin
w(k ) ,h(k ) ,R(k )

D F(k) w(k) ⋅h(k) +R(k)( )+λ R(k)

F

s.t.!!!!w(k)≥ 0, !!h(k)≥ 0, !!R(k)≥ 0
  (4) 

Here the (k) superscript denotes the dictionary element index and  D  is the cost function we choose to 
employ (in this case any form of a β-divergence). For k = 1 … K we solve the above optimization problem 
and in each step we obtain a new dictionary element w(k) and its corresponding activations h(k). These will 
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correspond to columns of W and rows of H respectively. There is also a non-negative residual component 
R(k) which is the result of removing the one-rank approximation w(k) h(k) from the input F(k). For each suc-
cessive iteration we use F(k) = R(k-1), except for the first iteration in which F(1) will be the original 
time/frequency input to analyze. The regularization term on R(k) is there to discourage the trivial solution 
where R(k) = F(k). This approach effectively approximates the input as best as possible with a rank one de-
composition while leaving a non-negative residual, then obtains a new rank-one decomposition on that 
residual and repeats until the desired number of dictionary elements has been extracted. The numerical 
solution to the above problem has a multiplicative update that is not significantly complex (shown here 
for β = 1): 

 

!!  !  

w(k)←w(k)⊙ F(k)⊘ w(k)h(k) +R(k)( )( )⋅h(k)⊤⎡
⎣⎢

⎤
⎦⎥
⊘ 1 ⋅h(k)⊤( )

h(k)← h(k)⊙ w(k)⊤ ⋅ F(k)⊘ w(k)h(k) +R(k)( )( )⎡
⎣⎢

⎤
⎦⎥
⊘ w(k)⊤ ⋅1( )

R(k)←R(k)⊙ F(k)⊘ w(k)h(k) +R(k)( )⎡
⎣⎢

⎤
⎦⎥
⊘ 1+λR(k)( )

  (5) 

In terms of FLOPs these updates are more efficient than the regular factorization updates (Lee and Seung 
2001), since they do not include any matrix/matrix products. This results in a dramatic speedup since we 
only need to compute a rank-1 factorization at a time, and as we show below, we also obtain faster con-
vergence behavior this way. 

In Figure 2 we show the convergence behavior of this approach as compared to a regular factorization. In 
that figure’s simulation we seek to find an adequately good low-rank approximation to an acoustic re-
cording. Using a regular full-rank approach we need to successively compute a rank-1, rank-2 and rank-3 
decomposition until we see obtain a reconstruction error below 10% of the input’s energy. Using the de-
flation method we see that we obtain faster convergence and a lower error, while additionally requiring 
roughly 2/3rds of the iterations to reach comparable performance. In addition to that, the update equa-
tions for the deflation method are numerically significantly faster to compute. Since in real-life problems 
we routinely compute dictionaries with hundreds of elements, the savings of this approach can be signifi-
cant. Although the results obtained through deflation are not quantitatively the same as with full-rank 
methods‡, they result in qualitatively the same performance for dictionary-based tasks such as speech 
denoising. 

 

Figure 2. Comparing the deflation approach to regular factorizations. The pink lines show the re-
construction error as we perform successive factorizations with an increasing rank in or-
der to discover an optimal K. The blue lines show the reconstruction error using the defla-
tion approach, which converges faster and uses much faster computations. 

                                                
‡ It should be noted here that for most practical non-negative models in acoustical signal processing, there is no 
uniqueness. Most methods converge to local optima that in practice result in uniform performance. 
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Validation: As part of our plan we will investigate this approach further to better understand how it be-
haves and how additional computational savings can be gained. We plan to launch a formal investigation 
in the computational complexity and convergence behavior of this process, and to run thorough simula-
tions that examine how these estimates relate to full-rank models. We will focus on problems of diction-
ary learning, which is the process that stands to gain the most. In order to validate our findings in prac-
tice, we will apply this method on a natural sound data set that consists of multiple days of content. Our 
goal is to learn a dictionary for this data set and to then use it to perform source separation and sound 
classification on mixtures of sounds created from that database. Since existing methods cannot operate on 
large scales of data we will do a direct performance comparison using a smaller subset. We will measure 
differences between respective runtimes and also of literature-standard metrics for separation and classi-
fication problems (Févotte, Gribonval, and Vincent 2005, Giannoulis et al. 2013). Finally, we will perform 
the first ever analysis of a corpus consisting of days of content, and will note how a dictionary trained on 
a substantially larger set of data performs with respect to the current state of the art. 

Deliverables: By the end of this investigation we will have a lightweight dictionary learning algorithm, 
new theoretical results on the design of deflation-based non-negative models, and a better understanding 
of the quality of dictionaries trained on large data sets.  

Component II: Accelerating Large Dictionary Deployment 

Problem: In many cases we are confronted with having to simultaneously use multiple dictionaries, each 
with a few hundred or thousands of elements. One such situation is when performing source classifica-
tion from mixtures. In this case, each source class will come with its own dictionary, and all of these dic-
tionaries will be used at the same time. Another case is that of the Universal Speech Model (Sun and 
Mysore 2013), which is a speech model trained on a lot of different speakers and concatenates their dic-
tionaries to form a universal speech model. These cases are equivalent to a factorization that is done with 
a very wide matrix W, which can result in a significant computational cost and to date has limited the 
deployment of such systems with large dictionaries. 

Proposal: Our recent work (Kim and Smaragdis 2013), has shown an efficient way to maintain the bene-
fits of a large dictionary while shedding the extra computational burden. We will extend this idea and 
develop a framework that will allow us to compress large dictionaries to significantly smaller sizes, while 
still maintaining their high performance characteristics. This will allow us to deploy systems that are us-
ing significantly more complex models without requiring the necessary computational load. This idea 
will also let us perform simulations that have been impossible in the past, and will provide us with a bet-
ter understanding of how very large dictionaries can improve acoustic mixture analysis. 

Approach: The key observation here is that dictionary elements of acoustical sources tend to lie on highly 
structured manifolds. With no loss of generality, we will consider the model where all the columns of F, 
W and H are constrained to sum to 1. This is a common convention in the literature since we are usually 
invariant to absolute scale in the acoustic domain. This is often achieved by normalizing the columns of 
the input matrix, performing an analysis, and subsequently applying the same column gains to modulate 
the output back to the original input scale. This process also transforms the factorization model to the 
Probabilistic Latent Component Analysis (PLCA) model, which is a probabilistic version of a non-
negative factorization (Shashanka, Raj, and Smaragdis 2008). 

An illustrative case of how such models work is shown in Figure 3.a. Because of the normalizations, all 
dictionary elements (as well as data) will lie inside a simplex. Shown in the left plot is an illustrative low-
dimensional dictionary that lies on a manifold. Each point corresponds to a dictionary element, which in 
this case would be a 3-dimensional spectrum. Any data points in that source’s space will be explained by 
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a convex combination of the dictionary elements. There are two problems in this setting: a) for a large 
dictionary we would need considerable memory and processing resources to apply it on a mixture, and 
b) this dictionary can reconstruct parts of the space that are outside of the source’s manifold (e.g. any part 
between two dictionary elements). The latter point can be an issue since one of our primary concerns with 
such models is to have minimal overlap between multiple dictionaries. If a dictionary can reconstruct 
points that are outside of a source’s manifold that maximizes the probability that it can overlap with an-
other source’s dictionary. A solution to this problem would be to use sparse activations on the dictionary 
elements, thereby approximating areas close to each dictionary element and ensuring that all potential 
reconstructions are lying on the dictionary manifold (Smaragdis, Shashanka, and Raj 2009). This ap-
proach results in highly improved results for speech separation tasks, but unfortunately it introduces ad-
ditional computations that prohibit large-data processing. 

               
 (a)   (b) 

Figure 3. Experiments in subsampling large dictionaries. In plot (a) the light pink points are the 
original dictionary elements, and the blue points are the subsampled points. We see that 
there is a fair amount of redundancy due to a high concentration of original dictionary el-
ements near the center of the manifold. When we use the proposed method, plot (b), we 
use a very small amount of dictionary elements whose locally linear combinations can 
trace the original manifold structure. When approximating a data point as shown, we only 
use a local neighborhood of dictionary elements and guarantee manifold preservation. 

Our more recent investigations (Kim and Smaragdis 2013) focus on resolving such problems while main-
taining these desirable performance characteristics. One obvious approach is to employ random sampling 
on the source dictionary. With a substantially large dictionary, one can sub-sample it and use the result-
ing samples as a new smaller dictionary. In the Figure 3.a, we show what this looks like. It can result in a 
dictionary with fewer elements that is amenable to faster processing. However, there is no guarantee that 
we will sample points from the crucial parts of the large dictionary and run the risk of suboptimal per-
formance. To address that, we propose a different method that maintains performance while drastically 
reducing the necessary dictionary size. This involves the following decomposition: 

 
!! ! 

W≈W ⋅S ⋅H
W∈!+

M×K , !S∈!+
K×L , !H∈!+

L×N   (6) 

Where L << K and the matrices S and H are sparse along their columns. This decomposition effectively 
approximates W using a much smaller dictionary W2 = W·S of size M ⋅ L, as opposed to W’s M ⋅ K. Each 
dictionary element of W2 will be a linear combination of only a few elements of W, and will ideally cap-
ture the most salient points of the original large dictionary. The estimation equations of this process are 
very similar to the basic factorization model and of similar complexity. Of course this isn’t a complete 
solution, we still have two major problems to address. 

First, we are still faced with a large number of computations for completing this decomposition. This can 
be overcome using a prioritization step based on hashing. We note that by design S and H have sparse 
columns, meaning that the elements in W·S will each include only a small number of the columns of W. 

 

Original Dictionary Data
Random Samples

Original dictionary
Point to approximate
Approximation
Used dictionary elements
New dictionary
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As a result, most of the dot products that are necessary to estimate S and H will be performed between 
vectors that are mostly uncorrelated. Therefore, we can prioritize computations so that we only perform 
useful dot products. Therefore, in every iteration of the estimation process we use a hashing-based search 
to find which parts of W, S and H will produce approximately non-zero dot products and only compute 
these. This allows us to significantly reduce the size of necessary computations and still obtain a good 
estimate of S and H. Using preliminary experiments, we found that using this approach we can reduce 
necessary computations up to two orders of magnitude without an appreciable loss of performance. 

The other problem is that we need to guarantee that the new dictionary W2 is expressive enough to 
properly represent the space that W occupies. We observe that the operation that we perform so far pro-
duces new dictionary elements that are comprised out of linear combinations of the original dictionary 
W. An example of that is shown in Figure 3.b. Note that the new dictionary elements tend to occupy key 
positions from the original dictionary, not being spread in areas that can be easily explained by their con-
vex combinations. To properly approximate the manifold structure of the original dictionary, we need to 
impose one more constraint – that the elements of the new dictionary are joint-sparsely activated. This 
sparsity constraint is defined so that only neighboring elements can be active at the same time. This 
means that each potential approximation will be defined by a small number of neighboring dictionary 
elements, thereby maintaining the manifold structure of the original dictionary W. An example of that is 
shown in Figure 3.b. 

Using this approach, we performed experiments to measure the performance drop with respect to the 
size reduction of the original dictionary. In Figure 4 we see the comparison between an original full dic-
tionary, a random sub-sampling of it, and the manifold preserving method with hashing and not. We see 
that as we reduce the number of sampled dictionary elements the approximation error increases. Howev-
er our approach results in a much slower error increase that allows us to use significantly smaller fraction 
of the dictionary size while still maintaining a relatively good performance. Additionally, using the hash-
ing-based computation prioritization we observe negligible effects in performance, while offering signifi-
cant computational savings. 

 

Figure 4. A comparison of the performance between randomly sampled dictionaries and manifold 
preserving sampling. The vertical axis measures the approximation error between the 
original input and the reconstruction based on these methods. Lower values mean that we 
are obtaining a better fit. The horizontal axis represents the number of dictionary elements 
as compared to the full dictionary size. One can see that although random sampling 
works, it isn’t as effective as the proposed approach, which quickly converges close to the 
performance of a full dictionary using only a fraction of its size. 
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Locality Sensitive Hashing for Fast Manifold Learning of Audio from Probabilistic Topic Models

dates per each source are used to reduce the size of the
subsequent nearest neighbor search at every EM iteration.
Instead of the entire dictionary elements Zy the reduced
search is based only on those N ⌧ Zy candidates (line
15). The actual EM updates are not affected by this proce-
dure, since they already exclude non-neighbors.

However, the reduced complexity for the neighbor search
is critical. As we saw in Section 2.1, the complexity of
exhaustive nearest searching, O(FrZY ), governs that of
each EM iteration rather than the actual EM updates on
neighbors with a lower complexity O(FKY ). Because
now the search is only on the N candidates with least
Hamming distance to the source estimate, line 15 runs in
O(FNY ), which can be less complex if we choose small
N , i.e. K < N ⌧ rZ.

We do have additional complexity for the hashing part be-
fore each EM updates (line 13 to 15) similarly to the ones
in Algorithm 1, but now the T in O(Y LT ) and O(TN) can
be reduced to Zy

= rZ. Once again, these are bit-pattern
operations that have minimal processing time.

4. Numerical Experiments
In this section we compare several models discussed so far:

• Random sampling
• The comprehensive Manifold Preserving Quantiza-

tion without hashing (MPQ)
• The proposed Manifold Preserving Quantization with

WTA hashing (MPQ-WTA)

• Sparse PLSI
• The comprehensive Manifold Preserving Separation

without hashing (MPS)
• The proposed Manifold Preserving Separtion with

WTA hashing (MPS-WTA)

We first show the quality of MPQ-WTA in the context of
minimizing the reconstruction error compared with random
sampling, PLSI, and the comprehensive MPQ. Then, MPQ-
WTA is harmonized with MPS-WTA to build a fast au-
dio source separation system, which is compared with pre-
vious models without the hashing concept: random sam-
pling or MPQ followed by MPS. We finally apply the pro-
posed models to a more realistic scenario – speech denois-
ing without a priori knowledge about either the noise or the
speaker, which therefore requires a big audio data set for
training.

The separation quality is measured by using standard
source separation metrics (Vincent et al., 2006). Signal-to-
Interference Ratio (SIR) evaluates the level of interfering
sound against to the source we care about. The value be-
comes larger if the interference is suppressed to a greater

degree. Signal-to-Distortion Ratio (SDR) is an overall
measure that takes the artifacts introduced during the sepa-
ration into account along with SIR.
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Figure 3. The performance of the quantization methods, i.e. the
manifold preserving quantization, random sampling, and the pro-
posed hashing technique, as opposed to the conventional convex
hull method (PLSI). Because PLSI does not quantize the data, its
sampling rate means the number of topics to PLSI.

4.1. Quantization of Speech Signals with WTA Hashing

Figure 3 compares several approximation techniques for
speech data. On top of the previous comparison conducted
in (Kim & Smaragdis, 2013), we add the results from the
MPQ-WTA technique.

First, we concatenated nine sentences from a speaker in the
TIMIT corpus (Garofolo et al., 1993) as our training data
to be used for the following cross-talk cancellation experi-
ment (Section 4.2). The concatenated signal is transformed
to a matrix using STFT with 64 ms hann windowing and 32
ms overlap. We take the magnitudes of the matrix and nor-
malize them to make sure the column vectors to sum to one.
After the transformation, we get a non-negative matrix with
513 linear frequencies (rows) and 749 spectra (columns).

It is obvious that the usual PLSI model has the most pow-
erful reconstruction ability, since its convex hull includes
all the off-manifold areas inside. Therefore, the lowest re-
construction error, i.e. the sum of cross entropy, does not
always guarantee better separation that is following. As for
the comprehensive MPQ, which finds the sparse encoding
of the entire topics (normalized magnitude training spectra
in our case), it works clearly better than the naı̈ve random
sampling. Our goal with the proposed MPQ-WTA is to get
an error curve that is as low as possible whose lower bound
is that from MPQ. Moreover, the quantization is supposed
to replace the overcomplete dictionary with the minimal
performance drop in the separation phase.

The number of candidates N from the hashing results is set

Original baseline
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Even more strikingly, we used this method for extracting speech from mixtures (and we discovered that 
using only 5% of the size of the original dictionary we can perform just as well as using the entire diction-
ary, whereas random sampling started producing rapidly degraded results once we used less than 50% of 
the original dictionary size. 

For the purposes of this proposal, we will perform a deeper theoretical analysis of the implications of 
manifold-preserving quantizations and we will devise optimal algorithms for this approach. So far there 
has been very little theoretical analysis of the manifold properties of dictionaries of acoustical signals, and 
how they can overlap with each other when used in factorization models. We will be the first to examine 
this space and its practical implications. Unlike traditional linear models (e.g. the ones used in compres-
sive sensing and sparse coding), we cannot use existing coherence measures since they are designed to 
operate on a Euclidean space and they do not apply on the types of dictionaries we find in acoustical mix-
ture processing. As we better specify what it means to have a manifold-preserving method we will be 
answering questions that are central to these models and have not been considered in the past. 

Validation: We will validate our approach by using it for speech denoising problems trained on large 
corpuses. As shown in (Smaragdis, Shashanka, and Raj 2009) and (Sun and Mysore 2013) using a large 
dictionary trained in multiple speakers can result in a significant increase of denoising performance. 
However, this comes at a cost of additional computations that impose undesirable constraints. Current 
models are limited to being trained on a relatively small number of speakers (not more than 100) using 
only a few seconds of speech from each speaker. Using the aforementioned approaches we will be able to 
train on a much larger training set (in the order of hundreds of speakers and hours-long segments) and 
obtain vastly larger dictionaries. This effort will not only allow us to use such large dictionaries on weak-
er devices (e.g. embedded and mobile systems), but it will provide us with a glimpse of how large train-
ing data can help us improve source separation systems. We will use community-accepted measures 
(Févotte, Gribonval, and Vincent 2005, Taal et al. 2010) to quantify the performance of these large-
dictionary systems compared to existing approaches. It is now known that a large dictionary can have a 
dramatically positive effect on performance; being able to scale such an approach to a much larger train-
ing set can potentially bring us to a new regime of results for mixed acoustic signal processing. 

Deliverables: At the end of this investigation we anticipate to have a better way of compressing large dic-
tionaries with no appreciable effects on performance, to have obtained a deeper understanding of the 
manifold structure of sound in these spaces, and to measure impact of training on large acoustic data sets 
for the purposes of mixture analysis. 

Component III: Application of Components I/II to the Wider Family of Models 

The aforementioned directions will be primarily tested on the basic factorization model in equation (1), 
however given the large number of extensions of this model we anticipate that these methods will have 
impact on a wider set of tools. As we have shown in (Smaragdis et al. 2014), there are elegant ways to 
generalize the basic model and describe a wide family of static and dynamic models that are based on the 
same principle. This includes models that are designed to decompose different types of time/frequency 
transforms (e.g. power spectra, magnitude spectra, learned transforms like Karhunen-Loëve models, etc.), 
but more importantly models that incorporate the temporal dimension. This includes Kalman filters and 
Hidden Markov Models, whose states are characterized by non-negative factorizations. Many of the theo-
retical investigations that will conduct will be directly applicable to these models as well. 

More specifically, we are interested in using the aforementioned developments to speedup the parameter 
estimation and deployment of the N-HMM (Mysore 2010) and dynamic PLCA (Smaragdis et al. 2014) 
models. These are models that have been shown to be more effective than static models when it comes to 
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analyzing temporally coherent signals (which most of acoustic data is). However, the existing algorithms 
are heavily slowed down by the use of large dictionaries and the difficulty of learning them rapidly. We 
anticipate that our analysis on fast learning and deployment of non-negative dictionaries will let us apply 
new ideas on these models and make their application on larger data sets feasible. For the N-HMM mod-
el, we plan to test its performance on larger dictionary models than the ones used before (Mysore 2010), 
and to see how its performance scales when trained on larger data sets and user with more states that 
contain larger dictionaries. Likewise, for the dynamic PLCA model we will consider a larger dictionary 
size and measure its effect on performance for tasks like mixture sound recognition and denoising as re-
ported in (Nam, Mysore, and Smaragdis 2012) and (Mohammadiha, Taghia, and Leijon 2012). 

Educational activities 
We find that due to the interdisciplinary nature of this project there is potential to design educational ac-
tivities that present new ways to think about audio processing (and signal processing in general). 

Curriculum Development 

The project PI has been active in curriculum design, in both the CS and ECE depts. and has been charted 
to develop a set of new classes that fill the skills gap between them, exposing CS students to signals theo-
ry and ECE students to learning and AI. In his first year he designed a new graduate class on Machine 
Learning for Signal Processing, and a new undergraduate sophomore class on Designing Intelligent Systems. 
Both classes were hands on and cross-listed between the CS and ECE depts., but due to their breadth they 
were also attended by students from mechanical engineering, mathematics, music, finance, aero-astro 
and bioengineering. The PI received top student reviews from both of these courses during all of the se-
mesters they were offered. We anticipate this curriculum development activity to continue throughout 
this project, and to use our research findings to help design more classes. More specifically, we have the 
following courses in mind for development: 

Undergraduate CS/ECE class: Intelligent Signal Processing. Two admittedly weak points of CS students 
are their ability to manipulate signals, and their fluency with probabilistic reasoning. Both of these skills 
are introduced late in standard curricula (if at all), and by that point they constitute material that’s diffi-
cult to grasp after the traditional exposure to deterministic and symbolic processes. Likewise, ECE stu-
dents are often exposed to AI and machine learning during their upper level classes and miss the oppor-
tunity to properly internalize this way of thinking early on. Given the unprecedented prevalence of sig-
nals and learning (signals being central to rich-media manipulation and learning being one of the most 
dominant areas of research and commercial activity today), we believe that students should be exposed to 
this material early on in a practical motivating context that helps them intuitively understand the class 
content. This proposed class on intelligent signal processing will be focusing on practical applications such 
as image and speech recognition, biological signal processing, music information retrieval, etc., as a way 
to motivate students and to impart practical skills. We are taking special care not to burden such a class 
with traditional signals and learning theory that is often cumbersome, demotivational, and a hindrance to 
STEM student retention, but instead we are interested in “planting the seed” early on to help in develop-
ing an intuition which will be invaluable once more traditional signals and learning course electives are 
attended later on. Given the prevalence of mixed-signals and large signal collections in the real world, we 
anticipate that a significant part of the homework and projects will be using components that we will de-
velop in the aforementioned research plans. 

Graduate engineering class: Big Data & Mixed-Signals Processing. Given the wide breadth of applications 
that relate to the subject of this proposal we anticipate to offer a new class tailored to graduate students 
from all of the engineering departments. Our observation from the aforementioned Machine Learning for 
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Signal Processing class is that there is considerable interest in large-scale mixed-signals processing 
throughout our campus. The PI has advised (and collaborates with) students from a diverse set of de-
partments, such as civil, biomedical, mechanical and neuro-engineering, as well as in music, physics and 
mathematics, on many practical and theoretical problems. We anticipate to package all the lessons 
learned throughout the research development of this project and to offer this graduate course in order to 
seek out new applications of our methods, and to address an area that we know has strong student de-
mand. Just as before, we see a strong possibility to incorporate real-life problems with big-data and 
mixed-signals into the syllabus and the homework assignments. Due to the breadth of the students that 
can take this course we also anticipate to come across novel applications of this technology in areas out-
side of the PI’s research domain (e.g. bioacoustics, geophysical signals, etc.). 

Massive Open Online Class: Audio Machine Learning and Signal Processing. With the recent trend of Mas-
sive Open Online Classes (MOOCs), we have seen an unprecedented transfer of knowledge from univer-
sities to the masses. The University of Illinois has partnered with Coursera to develop online courses. The 
PI of this project has committed to develop a course on modern techniques for Audio Machine Learning and 
Signal Processing. This is an important and timely subject that is not covered thus far by any online offer-
ing known to us. With the increasing prevalence of audio in our lives, this is a subject that’s not only in-
teresting from an academic standpoint, but also one that is central to students seeking employment in the 
telecommunications, entertainment and online media industries. This course will aim to bring together 
common audio operations in an integrated manner, and will also incorporate findings of this project since 
they address one of the most central problems in audio today. Given the proliferation of large audio data 
sets (speech, music, environmental sounds, etc.), we find that the research problems that we will attack 
above will make for very motivational projects and hands-on instructional material. 

Professional tutorials 

Outside of the university setting we also anticipate to disseminate our findings through conference tuto-
rials and visiting lectures. The project PI has already delivered conference tutorials on the subject of 
source separation and denoising (INTERSPEECH 2006, ICASSP 2011, INTERSPEECH 2012) and is a fre-
quent guest lecturer. We anticipate continuing this dissemination effort. More specifically, we plan to de-
liver the following tutorials in upcoming conferences: a tutorial on compositional methods for signal pro-
cessing, a tutorial on mixed-signal processing for large data, and a tutorial on mixed-signal analysis for speech 
and music processing. These tutorials will directly relate to the material we develop during the course of 
this project and will serve to popularize these ideas. For these tutorials we will target high-visibility ven-
ues, such as the aforementioned conferences. 

Student mentoring 

During the last year the PI has been mentoring a team of five graduate and three undergraduate students. 
He also runs an active visiting international student program that has so far hosted three more graduate 
students in the past few years. In addition to the above, the PI has been involved in research projects with 
multiple corporations (Adobe, Mitsubishi, Analog Devices, Sony), and in that capacity has mentored 
graduate students that perform their internships there. Due to the strong corporate ties of the PI, all of his 
mentored students are being placed in basic-research summer internships, where they are expected to 
broaden their perspective and come back with fresh ideas and new experiences. 

We anticipate this specific research project to involve students from various levels. With the advent of the 
new aforementioned undergraduate courses, we expect to interact with greater numbers of lower-year 
undergraduates and to be able to offer them research opportunities since their coursework relates to the 
objectives of this project. We also anticipate to open new positions for graduate students and visiting stu-
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dents, but also to collaborate closer with existing students on campus who work on related problems. 
Adobe has already pledged to host summer interns to assist with their media intelligence research effort, 
which aligns with the goals of this proposal. 

Interdisciplinary activities 

Another important aspect of student mentoring will come via the incorporation of a new interdisciplinary 
center for audio sciences that the PI has founded with the support of the College of Engineering at the 
University of Illinois. This center has affiliated faculty from a wide range of departments (CS, ECE, Bio-
medical, Speech and Hearing, Library Sciences and Music), and is expected to act as a nexus for audio 
and sound research in the campus. Due to the broad interdisciplinary footprint of this center we expect to 
attract undergraduate and graduate students with a variety of backgrounds and research interests that 
will be involved in our research activities. From an educational standpoint we expect this center to 
broaden students’ understanding of audio and to host an interdisciplinary series of seminars and invited 
talks that will make a well-rounded audio education more easily accessible in our campus. 

In tandem with this center, we hope to take advantage of the CS + X program, a dual majors program be-
tween CS and any liberal arts program that can benefit from computational techniques. We have already 
developed with the School of Music a CS + Music curriculum to address the needs of undergraduate mu-
sic students that have technological inclinations, and vice-versa. The strong music component of this pro-
posal is expected to be used as a recruiting tool and motivation for students in this program, but also to 
demonstrate a more approachable side of otherwise stern STEM material. 

Outreach activities 

There is no denying that audio demos can be very motivating and inspiring. Designing computers and 
robots that can understand sound, speech and music is an effective way to demonstrate mathematics at 
work in a way that everyone can appreciate. In order to help outreach, we plan to use real-world audio 
demos that result from our work to inspire high school and underrepresented group students and inter-
est them in a STEM career. We plan to do so through our annual Engineering Open House, but also by 
employing audio-related installations in the CS building, which is frequented by students from the Uni-
versity High School that is across the street from our laboratory. More specifically we expect to have an 
autonomous demonstration audio scene analysis system which students can interact with in real-time. 
Due to our proximity to local high schools (with percentages of low socioeconomic students in excess of 
60%) we also plan to participate in regular university visits which are designed to inspire students and 
attract them to the engineering and science fields. 

Dissemination activities 
Tool building 

Since the main goal of this project is to examine scalable methods for audio mixture processing, we want 
to make these ideas more accessible by sharing our tools with the research community. As part of this 
project we expect to release MATLAB and C++ code, as well as data to replicate our experiments and fa-
cilitate further research in this area. More specifically we will provide optimized code for all the research 
activities described above, as well as data sets to demonstrate how it works. 

Research community activities 

Recently we have seen the development of a series of popular audio challenges (Christensen et al. 2010, 
Cooke, Hershey, and Rennie 2010), that were designed to motivate source separation researchers and to 
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provide a standardized platform for objective comparisons. This activity is also supported by the wider 
signal processing community through the IEEE technical steering committees for Audio and Acoustics 
and Machine Learning for Signal Processing. Since during the course of this project we will be developing 
benchmarks and challenges to further our algorithm development, we plan to make such toolsets freely 
available in the form of community challenges. By doing so we hope to stimulate research in this field 
and to offer a set of standards that can help anchor a community. 

Deliverables summary and timeline 
In summary, we propose to attack three problems that will provide context and their own unique chal-
lenges to our research goals. The work involved in the above projects will be overlapping by a fair 
amount and does not mean that we will have to initiate and complete three distinct projects, but rather 
one integrated effort. 

The specific research elements that we seek to develop are the following: 

1. Efficient dictionary learning via deflation methods. This will involve the investigation of basic algo-
rithms that use incremental learning to efficiently construct dictionaries from large acoustical da-
ta sets. By being the first to employ such methods on a very large natural sound corpus we also 
aim to obtain more insights on the effects of training set sizes on the quality of learned dictionar-
ies, and how that affects the performance of mixture-analysis algorithms. The outcomes will be 
quantified in terms of processing speed relative to existing models, and by using literature-
standard performance metrics to evaluate their application in problems such as source-separation 
and recognition of acoustic sources in mixtures. 

2. Rapid fitting of large dictionaries on new data. This part involves taking advantage of the manifold 
structure in overcomplete acoustical dictionaries in order to reduce the necessary computations 
and minimize memory requirements. Aside from developing new algorithms, we aspire to learn 
more about the manifold structure of sounds, and more importantly how their geometry changes 
when learned through small vs. large data sets. This technology will be tested on speech de-
noising applications that will be trained on a large number of speakers, thus resulting on a large 
overcomplete dictionary. We will quantify the success of this project in terms of separation quali-
ty and speed of operation using standard metrics. 

3. Application of extensions to temporal models. Using the results from the other two thrusts we will re-
formulate the H-HMM and dynamic PLCA models in order to support a larger number of states 
and bigger dictionaries. By applying them on various mixture problems we will be able to gauge 
how such larger models (also trained on larger data) can result in improved results. 

On the educational side we plan: 

1. A MOOC on Audio Machine Learning and Signal Processing. An open online course served via 
Coursera that focuses on a unified view of common real-world audio analysis problems and their 
practical solutions, a big part of which will be on big-data collections and mixed-signals. 

2. A graduate course on Large-Scale Mixed-Signals Processing. An interdisciplinary course that will in-
volve the theory that we will develop in the context of mixed-signals processing in a variety of 
large-scale application domains. 

3. An undergraduate course on Intelligent Signal Processing. An early-level hands-on course that expos-
es engineering students to signals and learning theory applications (the general encompassing 
area of this proposal). 

In addition, we plan to aggressively recruit early-level undergraduates and high-school students to be 
involved in the construction of practical manifestations of the developed theory. Moreover, this work will 
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take place in our newfound audio sciences center, an interdisciplinary entity, where applications of this 
work will be communicated to students from a wide range of backgrounds and departments. 

Finally in terms of information dissemination we plan to: 

1. Organize conference tutorials on the findings of this project 
2. Distribute data and code to stimulate research on this topic. 
3. Setup a competition and benchmark processes for mixed-signals processing. 
4. Make demos to promote STEM involvement to high school audiences. 

 

The anticipated timeline of this project is as follows: 

Year 1 Year 2 Year 3 Year 4 Year 5 
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