Proposal Summary

This project investigates novel constructions of error-correcting codes supporting sublinear-time
error-detection, sublinear-time error-correction and efficient list-decoding, as well as their applica-
tions in the areas of complexity theory and pseudorandomness. The project builds upon several
recent successes of the PI, such as the construction of new high rate error-correcting codes allowing,
for the first time, sublinear-time error-correction.

The classical theory of error-correcting codes by Shannon and Hamming has developed into a
flourishing subject, and has been hugely influential in the design of communication and storage
systems. However the more modern aspects of error-correcting codes, including those relevant to
complexity theory and pseudorandomness, have lagged behind, and there is a lot here that is very
poorly understood. This project aims to remedy this situation by systematically exploring what
can be achieved in the realm of local-decoding, local-testing, list-decoding and local list-decoding,
and by exploring the implications of this in complexity theory and pseudorandomness.

Specific goals of this research project include:

e Locally testable and locally decodable codes of high rate with polylogarithmic query com-
plexity,

e Probabilistically checkable proofs of linear length, checkable in sublinear time,

e Hardness amplification converting worst-case hard functions to average-case hard functions
with negligible change in the input size,

e Strong average case circuit lower bounds against the circuit class AC?[@],

e Improved constructions of randomness extractors.

Intellectual Merit: Error-correcting codes, complexity theory and pseudorandomness have had
very productive interaction, which underlies some of the basic results in all these fields. Motivated
by recent developments in coding theory by the PI, this project will revisit this interaction, develop
new error-correcting codes and coding-theoretic tools, to use them to address fundamental problems
in complexity theory and pseudorandomness.

Broader Impact: One aspect of the broader impact of the project will be the error-correcting
codes and algorithms developed. These have the potential to be applied to real-world data storage
applications, which is very relevant to current technology. The educational component of this
project will involve the mentoring and education of junior researchers who intend to pursue their
own careers in research, including hopefully some women and minorities. This project will also
develop courses, and make the course materials publicly available. The PI and junior researchers
will actively seek out broad dissemination of the progress in research, by presenting the research and
its outcomes in seminars at leading conferences, workshops, and academic and industrial research
institutions. Finally, this project will strengthen connections between Computer Science, Electrical
Engineering and Mathematics (in particular between complexity theory, coding theory, information
theory, algebra and additive combinatorics).

Keywords: Error-Correcting Codes, Sublinear-time Algorithms, List-Decoding, Complexity The-
ory, Proof Systems, Pseudorandomness, Randomness Extraction.
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1 Introduction

This project investigates novel constructions of error-correcting codes supporting sublinear-time
error-detection, sublinear-time error-correction and efficient list-decoding, as well as their applica-
tions in the areas of complexity theory and pseudorandomness.

The classical subject of error-correcting codes was created in the 1940s by Shannon and Hamming,
anticipating the need for greater reliability for the looming digital revolution. It has since devel-
oped into a flourishing discipline playing a vital part in the design of communication and storage
systems. In modern times, this subject has been reinvigorated through interaction with computer
science. One the one hand, the theory and practice of error-correcting codes has benefited greatly
from the algorithmic insights and methods of computer science; on the other hand, key notions
involving error-correcting codes have played a vital role in modern results of complexity theory
and pseudorandomness. This two-way interaction is founded on some amazing coding-theoretic
phenomena, such as the ability to detect and correct errors in sublinear time, as well as some
deep interconnections, such as the close relationship between error-correction and the conversion
of approximate solutions to exact solutions.

Recent developments by the PI in the theory of error-correcting codes related to sublinear-time
error-correction and list-decoding have given a glimpse of some unexpected phenomena. For exam-
ple, a recent result of the PI showed, for the first time, that there could be error-correcting codes
of high rate which support sublinear time error-correction. These phenomena have the potential to
translate into powerful applications in complexity theory and pseudorandomness. This project will
pursue these and other applications, while at the same time further exploring the basic questions
in error-correcting codes related to sublinear-time algorithms and list-decoding. Specific research
goals of this project include:

1. Systematically investigating what can be algorithmically done in sublinear-time with high-
rate error-correcting codes. This includes developing new codes and algorithms, as well as
understanding the limitations.

2. Exploring the applicability of such error-correcting codes to real-world computer systems,
and developing the necessary codes and algorithms to enable this.

3. Understanding the power of such high-rate codes for complexity theoretic applications. Specif-
ically,



(a) We will work towards developing a theory of high-rate (or low-redundancy) probabilis-
tic proof systems, and studying the amount of redundancy needed in Probabilistically
Checkable Proofs and Interactive Proofs.

(b) We will investigate what kinds of hardness amplification and random self-reductions are
possible in the high-rate regime.

4. Searching for new methods for proving correlation bounds against low-degree polynomials, of
the kind relevant for average-case AC°[®)] circuit lower bounds.

5. Investigating new approaches to constructing randomness extractors, perhaps via their strong
relationship to list-decodable error-correcting codes.

6. Constructing/disproving the existence of very high rate locally testable codes, of the kind
relevant for the Small Set Hypothesis and the Unique Games Conjecture.

As I will describe below, it is now especially apt to conduct such a research program, given the
current state of knowledge in the area, and given recent exciting and promising developments. The
other main aspect of this proposal is the educational aspect, which will involve mentoring and
advising young researchers, as well as developing course materials for new courses.

The rest of this proposal is organized as follows. In the next section we explain the context for this
research. In Section 3 we give a detailed description of the questions investigated by the proposed
research. In Section 4 we outline our educational plan, and how it integrates with our research
proposal. In Section 5 we describe the broader impact of the research and educational aspects of
our proposal. Finally we summarize some of the previous research accomplishments of the PI.

2 The Context

Before we can describe the concrete questions addressed by this proposal, we explain some of the
context motivating these questions.

An error-correcting code is given by an encoding map E : {0,1}* — {0,1}", which “encodes”
strings of length k into strings of length n (everything can also be done with {0, 1} replaced by any
finite set X; we stick to {0, 1} for this discussion). The image of this map is called the code, which
we will denote by C, and its elements are called codewords. The main measures of the quality of
an error-correcting code are its rate R and its minimum distance §. The rate R is defined to be
k/n, which measures the redundancy/wastage introduced in the encoding. The minimum distance
d € (0,1) is defined to the be the smallest (fractional) Hamming distance (A(-,-)) between two
distinct elements of C. The trivial but key observation that underlies the theory is that if one is
give r € {0, 1}" which is at Hamming distance at most §/2 of a codeword ¢ € C, then c is uniquely
determined. Thus if one designs an error-correcting code with large rate R and large minimum
distance d, one can use it to encode data with very little wastage of space, while at the same time,
protect it against a large fraction of errors.

One of the fundamental research programs undertaken by classical coding theory, and completed
by the 1970s, was to construct efficiently encodable and efficiently decodable error-correcting codes
which have both rate and minimum distance being (1). Not only were the so-developed codes



useful for actual error-correcting applications, these codes were based on using algebraic and com-
binatorial objects such as polynomial, finite fields and randomization for constructing discrete
structures, a paradigm which held great promise for further applicability.

Since the late 1980s, error-correcting codes and the paradigms for constructing them found great
impact in theoretical computer science. In particular, error-correcting codes based on polynomials
played a central role in the development of Interactive Proofs, Probabilistically Checkable Proofs
(PCPs), cryptographic hard-core bits, hardness amplifiers and pseudorandom generators. The
centerpiece of all these developments was the fact that a multivariate low-degree polynomial over
a finite field could be locally interpolated at a point x by looking at the values taken by that
polynomial on all other points of any line passing through x. This endowed the evaluation table of
a low-degree multivariate polynomial with some local robustness; errors can be corrected by only
looking at a few other entries of the table.

Motivated by this, one can define a locally decodable code as an error-correcting code equipped with
a (randomized) decoding algorithm, which when given as input a received word r € {0, 1}" which is
with distance 0 < §y < g of a codeword, and a message coordinate ¢ € [k], the algorithm looks only
at o(k) entries of r and returns the “correct” message bit m; with high probability (i.e., if m is the
unique codeword such that A(E(m),r) < do, then the algorithm returns m; with high probability).
Similarly one can define locally testable codes, which come with a testing algorithm that with high
probability distinguishes, using few queries, between a given received word being within distance €;
of some codeword, and being further than distance €2 of every codeword. This ability to work with
error-correcting codes in sublinear-time formed the conceptual heart of the various developments
in theoretical computer science mentioned above.

Another concept from coding theory that has played a key role in recent developments has been
list-decoding. Here one wants to recover from as large a fraction of errors as possible. An immediate
obstacle is that once we go beyond §/2 fraction errors, the original message m need not be uniquely
determined given the received word r. Thus we need to settle for a list of candidate messages. As
long as this list has bounded size, we may hope to find this list in a reasonable amount of time.
Actually doing this is a highly nontrivial algorithmic task, and until recently, it was not known
how to do this efficiently for any nontrivial code. The first nontrivial list-decoding algorithm
was given by Sudan [41], and it was for error-correcting codes based on univariate polynomials
(Reed-Solomon codes). This algorithm eventually played an important role in the construction of
hardness amplifiers [42], pseudorandom generators [43, 38] and randomness extractors [38]. This is
an example of a fundamental contribution made to coding theory by theoretical computer science,
which eventually fed back to have a big impact in theoretical computer science itself.

2.1 Recent Developments

In recent years, the notions of local-decoding, local-testing and list-decoding have been studied
quite a bit.

For local decoding, a large amount of work has gone into codes which are locally decodable with
a constant number of queries [25, 3, 46, 16], and today we know codes with subexponential length
achieving this. Very recent work of the PI and coauthors [31] has explored the other end of the
spectrum, that of codes with linear length (and hence constant rate), and showed that there exist
codes of rate approaching 1 which are locally decodable with k¢ queries for every ¢ > 0. The codes
constructed in [31] achieving this are called multiplicity codes, and they are closely related to the



ubiquitous polynomial codes. A large part of this research project is motivated by the natural
conjecture that using multiplicity codes can significantly improve many of the known applications
of polynomial codes across theoretical computer science.

Despite their superficial similarity to locally decodable codes, the theory of locally testable codes
has evolved in a significantly different way. In fact, progress on locally testable codes has come from
corresponding advances in the theory of PCPs. After a large number of works [23, 8, 4, 35, 7, 12], we
now know that there are locally testable codes, testable with a constant number of queries, which
have only slightly subconstant rate. However the only known locally testable codes of constant rate
require 2(k€) queries for testing. Some of the questions in this research project hope to advance on
this state of affairs. In a different regime of parameters, the PI and coauthors [9] showed that there
were codes of very high rate (1 — o(1)) which could be locally tested for just a constant number of
errors, using ek queries to the received word (for any € > 0). These codes played an important role
in some recent advances [2] on inapproximability and the Unique Games Conjecture.

List-decoding has also been intensely studied in past few years. Fundamental breakthroughs [18, 36]
in list-decoding of algebraic codes culminated in the basic result of Guruswami and Rudra [22] giving
explicit constructions of error-correcting codes achieving “list-decoding capacity”: they have rate R
and can be list-decoded from (the maximum possible) 1 — R — € fraction errors in polynomial time
(for any € > 0). Recently, the PI showed [28] that multiplicity codes can also achieve list-decoding
capacity. Another result of the PI [21] showed that random linear codes achieve list-decoding
capacity with optimal list-size.

These and other developments suggest some exciting and promising research directions which we
describe in the following section.

3 Proposed Research

3.1 High Rate Locally Decodable Codes and Locally Testable Codes

While the original reason for considering locally decodable codes and locally testable codes was
for applications in complexity theory (such as PCPs and interactive proofs), the most natural
application for such error-correcting codes ought to be for error-correction itself! Although we have
known such codes for a long time, they never made an impact on actual error-correction systems
because all these codes had very poor rates ( there was no known locally decodable code with rate

> 1/2). Indeed, codes used in the real-world for error-correction all have rate very close to 1. It was
also widely believed that locally decodable codes could not have rate close to 1 (for example, --- [14]

conjectured that locally decodable codes of rate > 1 — € could not exist, even if they had to correct
only a subconstant fraction of errors).

Recently I (along with my coauthors) [31] made significant progress on this problem (and in par-
ticular refuted ---’s conjecture). We constructed a new family of error-correcting codes called
Multiplicity Codes. These codes are very natural and are closely related to polynomial codes.

Multiplicity codes are based on evaluations of high-degree polynomials and their derivatives; the

inclusion of the derivatives allows one to consider polynomials of total degree larger than the size

of the underlying finite field, thus going beyond the range handled by the Schwartz-Zippel lemma.

Formally, the order-s multiplicity code of degree-d m-variate polynomials over [, is the code defined
as follows: for each m-variate polynomial over F, of degree at most d, there is a codeword, whose



symbols consist of the evaluations of that polynomial and all its partial derivatives up to order s
at each point of Fg".

The main property achieved by multiplicity codes is the following: for every «,e > 0 there is a
multiplicity code of rate 1 — «, which allows for local decoding from some constant fraction of errors
in sublinear time O(k€). The key points are that (1) « could be arbitrarily small, and (2) there
is absolutely no relationship between €, a. For previously known codes, to get anything nontrivial
whatsoever (e < 1), we needed the rate to be < 1/2, and furthermore, once we do have rate
R < 1/2, the query complexity of decoding had to be at least 2(k“%). Thus multiplicity codes even
achieved, for the first time, rate (1) while allowing for local decoding in time k€ for arbitrary € > 0
(independent of the rate).

This raises many exciting possibilities. Now that we know that it is possible to have rate very close
to 1 while having nontrivial local decodability, it makes sense to ask how small we can make the
decoding query complexity/time. In particular, I hope to investigate the following fundamental
question.

Question 1 Do there exist locally decodable codes of rate (1) (or even 1 — €, for every e > 0)
with polylogarithmic query complexity?

By results of Katz and Trevisan [25], it is known that the query complexity for a constant rate
code cannot be sublogarithmic. Multiplicity codes show that there are codes of rate (1) with
query complexity O(k€) for every e (independent of the rate). It is also known that there are
codes of polynomially-small rate Q(k~¢) which are locally decodable with polylogarithmic query
complexity (these codes are the classical polynomial-based Reed-Muller codes). The question above
is tantalizingly placed between them. A positive answer to this question (with codes of rate close
to 1) could have tremendous applications to real-world error correction.

Another closely related question asks something similar for locally testable codes.
Question 2 Do there exist locally testable codes of rate Q(1) with constant query complexity?

This question is intimately related to the existence of linear size PCPs, which we discuss in a later
section.

The state of the art for locally testable codes is noticeably different from the state of the art for
locally decodable codes. Using technology from the theory of PCPs, it was shown by Ben-Sasson and
Sudan [7] and Dinur [12] (see also Meir [34]) that there exist locally testable codes of rate m
which are locally testable with constantly many queries. This implies that the query complexity
of local testing is provably better than that for local decoding. However, for codes of rate Q(1),
nothing better than the O(k¢)-query decoding was known. Recently, Viderman [45] showed that
one could get locally testable codes of rate 1 — « testable with k¢ queries, for arbitrary a,e > 0
(in that work, multiplicity codes are cited as inspiration for exploring this regime of parameters,
although the techniques are unrelated).

One technique that is available in the case of locally testable codes and not for locally decodable
codes is proof-composition, a tool from the theory of PCPs. However, all known methods for proof
composition end up losing some superconstant factors in the rate. I believe that this intermediate
goal, of developing a composition method that does not hurt the rate, is a worthwhile pursuit that
may have applications to other settings.

A closely related, and more approachable, question is whether multiplicity codes are locally testable.



Question 3 For every o, e > 0, are there multiplicity codes of rate 1 — « locally testable with O(k)
queries?

This would be especially relevant for applications, since it would provide a single code of high-rate
which is both locally testable and locally decodable.

Due to their strong relationship to polynomial codes, one would suspect that the answer is yes (and
there is a natural candidate local test for this), but there seem to be some interesting challenges to
proving this. In particular, the naive adaptations of the classical local testers for polynomial codes,
in the setting of order-s multiplicity codes of m-variate degree-d polynomial codes over F, require
q > g -m, which immediately makes the rate bounded strictly below 1.

3.2 Using Multiplicity Codes for Error-Correction

One of the main potential uses of high rate locally decodable codes is for real computer systems, for
storing data to protect against errors. Ideally, error-correcting schemes are completely transparent
to other aspects of the computer system; when data is needed for use, the scheme should be able
to retrieve that data essentially as fast as it takes to read that data in an error-free setting.

Classical error-correcting codes encode k bits of data into O(k) codeword bits, and to retrieve any
one bit of the original (corrected) message, the entire codeword is processed and decoded, resulting
in a processing time that is at least Q(k). Thus more having more data increases the access time
proportional to the length of the data, which would not do for real applications at all. Instead,
practitioners today divide the data up into small blocks, and encode each block separately. Now
the access time for bits is reduced back to a constant, but the resilience to error has drastically
reduced from a constant fraction of all the bits to a constant number of bits.

Locally decodable codes are ideal for this situation. They allow one to encode the entire data, thus
keeping the resilience against a constant fraction of errors, while retaining easy access to bits of the
original data.

The simultaneously high rate and local decodability of multiplicity codes makes them a very suitable
candidate for such applications (in fact, it is the only known code achieving these properties).
Thus it is natural to explore all the favorable properties of multiplicity codes with respect to
error-correction. We pose some of these questions below.

Question 4 Can multiplicity codes of minimum distance 6 be deterministically decoded from 0 /2
fraction errors in near-linear time?

Such a deterministic decoder for the case of univariate multiplicity codes could be used to speed up
the local decoder for general multiplicity codes (since decoding univariate multiplicity codes shows
up as a subroutine in the local decoding algorithm).

Apart from quick decoding from up to half the minimum distance, it is useful to have the ability
to recover from even more errors, perhaps at the cost of a slightly slower decoding algorithm.

Question 5 Can multiplicity codes of minimum distance § be list-decoded from (0 — €) fraction
errors in polynomial time?



In [28], I studied some aspects of the list-decodability of multiplicity codes. One result that I
showed there was a positive answer to the above question for univariate multiplicity codes over
prime fields. This has the following strong consequence: multiplicity codes can achieve list-decoding
capacity! Thus the one family of error-correcting codes which has the best known high-rate local
decodability also has the largest possible list-decoding radius. I find the fact that both these
fundamental properties appear in one family of error-correcting codes the strongest evidence that
multiplicity codes have a lot of potential in error-correcting applications.

Going beyond this, one could even ask if multiplicity codes achieve list-decoding capacity with
optimal list-size.

Question 6 Can multiplicity codes of minimum distance § be list-decoded from (6 — €) fraction
errors with constant list-size?

Answering this question about list-decoding would automatically translate into a corresponding
algorithm for “local list-decoding”, which would have applications for hardness amplification (de-
scribed in a later section).

3.2.1 Practical Issues

While this is a theoretical research project, I think it is extremely important to also keep the
models, questions and directions grounded to reflect qualitative aspects of the underlying practical
issues. That is why I also hope to address the following question.

Question 7 (Informal) Ezxplore the algorithmic questions encountered by practitioners in imple-
menting error-correction systems based on multiplicity codes.

Now we mention one example of a concrete question that arises from this direction. After discussions
with a number of data storage practitioners, I found that one potential application of locally
decodable codes is to data centers, where there are large array’s of hard disks storing data, and the
major kind of failure to combat is an entire hard disk failing. The ideal mode for error correction
here is to treat each hard disk as one symbol from a (gigantic) alphabet, and whenever a hard disk
fails, we use the other hard disks to recover the contents of that disk. Two key aspects of this
model which differ from the locally decodable error-correction model are (1) the kinds of failures
are erasures (not errors), and (2) it is much easier to check if an erasure happened in a given
coordinate than to read the symbol in that coordinate. In this setting, how can we locally decode
multiplicity codes?” Here we know all the erased locations of the codeword, and the algorithmic
question here is to decide which of the remaining symbols to read in order to recover the value of
a given location. Maybe in this setting a larger number of erasures can be handled? Undoubtedly
there are many more theoretically-meaningful algorithmic questions that arise while looking at the
practical aspects, and I hope to formulate them concretely and tackle them over the course of this
project.

3.3 High Rate PCPs and Interactive Proofs

A prime place where high rate codes supporting local algorithms could be useful is in probabilistic
proof systems, such as PCPs and Interactive Proofs. Probabilistic proof systems are based on



encoding statements to be verified in a certain format, so that any cheating in the proof can
be caught easily, either interactively or non-interactively. Invariably, the encodings employ error-
correcting codes (to see at least why error-correcting codes are relevant, they map distinct messages
to codewords that are far apart in Hamming distance, so that their distinctness can be noticed
easily).

The PCP Theorem states (in one of its many equivalent forms) that for every language L € NP,
there is a format for writing a polynomial-length proof of membership for that language, such that
membership of a given input z in L can be verified by a probabilistic verifier by making only O(1)
queries into the proof. The PCP theorem has had a tremendous impact on a wide array of topics
across theoretical computer science, in particular on the theory of approximation algorithms and
inapproximability.

The PCP theorem directly implies that, unless 3SAT has a 2°(") time algorithm, one cannot get a
(1 — €g) approximation to MAX3SAT in 2" time, for some absolute constants g, e; > 0. In recent
years, there has been much research on the improving length of PCPs as a function of the length of
the witness of the original NP language (this can be viewed as improving the “rate” of the PCP).
In the application to inapproximability of MAX3SAT, this corresponds to increasing the absolute
constant €;.

Given that we now know that even codes of very high rate can support sublinear time decoding
and testing, it seems natural to ask if we can translate this into its PCP analogue. To this end, we
would like to investigate the following well-known open question.

Question 8 Do there exist PCPs of linear length, checkable with O(1) query complexity?

This would translate into obtaining the optimal ¢; = 1 in the above mentioned inapproximability of
MAX3SAT, and would imply sharp time complexity lower bounds for a number of other fundamental
optimization problems.

While answering this question will likely require a number of new ideas, the following question
seems to be much more directly related to the recent advances on codes.

Question 9 Do there exist PCPs of linear length with O(n®) query complexity?

A positive answer to this question would rule out the possibility of a 2°(")-time (1—€p)-approximation
algorithm for MAXn¢CSP. This would be the first essentially tight time-complexity lower bound
(albeit conditional) for a natural approximation problem.

Traditional PCPs based on polynomial codes use more than just their local-testability and local-
decodability; they take advantage of the inherent algebra of the code to perform an arithmetization
of the NP-complete problem at hand. The fact that multiplicity codes are also based on polynomials
is very encouraging; it suggests that arithmetization may be possible with multiplicity codes too.
However, in order to obtain a high rate PCP or even a constant rate PCP, the traditional versions
of arithmetization do not suffice, and some sort of high rate version of arithmetization seems to be
needed. This seems like an exciting possibility to explore, and I believe that such a tool could be
useful in other contexts too.

Another setting where we will explore the possibility of using high-rate codes is in the theory
of interactive proofs. The fundamental IP = PSPACE theorem of [33, 39] states that for every
language L in PSPACE, membership in L can be proved by a prover P to a verifier V' by an
interactive proof involving a polynomial amount of communication between P and V.



Here too, encoding via polynomial codes, local-decoding of these codes and arithmetization, are all
important tools for the known proof of this theorem. Thus we believe that using multiplicity codes
might be a way to make progress on the following basic question.

Question 10 How much communication and randommness is required to conduct an interactive
proof for a language in PSPACE? In particular, can the total communication and randomness of
an interactive proof for a Totally Quantified Boolean Formula (TQBF) ¢ be made at most O(|p])?

A beautiful recent result [19] gave some very strong results on the resources required for interactive
proofs of languages in uniform NC. The techniques there were also based on polynomial encodings,
and perhaps they may also admit some improvements via multiplicity codes.

3.4 High rate hardness amplification

The classical Impagliazzo-Wigderson theorem [24], part of the hardness vs. randomness paradigm,
shows that if certain complexity lower bounds held, then randomized algorithms are no more
powerful than deterministic algorithm. A key component of the proof is hardness amplification:
given a function f : {0,1}" — {0,1} which is hard in the worst-case, one can produce from it
a function f’ : {0,1}" — {0,1} which is hard in the average-case (i.e., hard to compute on a
uniformly random input). Apart from being useful for hardness vs. randomness, that fact that
hardness amplification can be done is a basic result about the complexity of computation.

We now know that hardness amplification is intimately related to error-correcting codes via the
notion of “local list-decoding” (the ability to list-decode from a large fraction of errors in sublinear
time) [42]. The existence of an efficiently encodable error-correcting code with a good local list-
decoding algorithm immediately gives a hardness-amplifying transformation. The rate of the error-
correcting code directly translates into the number of input bits of the hard on average function
(the relationship between n’ and n in the above notation), the efficiency of the encoding translates
into the complexity of the hard on average function, and the fraction of errors recoverable from
translates into the hardness of the hard on average function.

We hope to make progress on the following basic question.

Question 11 Let p > 0. What is the smallest n' (as a function of n) for which there is a hardness
amplifying transformation taking a worst-case hard function on n input bits to an average case hard
function on n’ bits which cannot be computed correctly on more than % + p fraction of the inputs?

Equivalently, what is the smallest rate binary locally list-decodable code which can be efficiently
encoded and also locally list-decoded from 1/2 — p fraction errors using polylogarithmic time and
queries? This question asks the list-decoding analogue of Question 1, and perhaps lower bounds
here will be easier than for Question 1.

A more immediate goal, is to understand what kind of hardness amplification follows from multi-
plicity codes. We have some preliminary results in this direction [28], which show that high rate
multiplicity codes have good local-list-decoding algorithms (up to the so-called Johnson bound).
The full scope of the implications of this for Question 11 remains to be explored.

I would like to highlight one particular question here that looks especially approachable. The
goal is to get a good hardness amplification of the permanent. Indeed the permanent was the



very first function to which hardness amplification was applied [32], where it was shown that the
permanent of a random matrix over large fields is hard to compute on average. I think it is will be
a worthwhile goal to try to make progress on the following question using the existing knowledge
around multiplicity codes.

Question 12 For ¢ = O(1), is the permanent of a uniformly random matriz over Fy hard to
compute with probability greater than 1 — € for some € > 07

The fact that permanents are polynomials, that derivatives of permanents are permanents, and
that multiplicity codes are based on polynomials and derivatives, all suggest that multiplicity
codes should have a lot to say about the average case hardness of the permanent. Earlier, Fortnow
and Feigenbaum [17] showed that under a certain non-uniform distribution, the permanent over I,
is mildly-hard on average.

3.5 Error-correcting codes and average case lower bounds against AC’[®)]

Another question that this project hopes to make progress on is the question of getting better av-
erage case lower bounds against the circuit class AC%[@] (which is the class of constant-depth
polynomial-size circuits composed of unbounded fan-in AND, OR, PARITY and NOT gates).
Strong enough average-case lower bounds for AC°[®] would give (via the hardness vs. random-
ness paradigm) pseudorandom generators against the class ACY[@], thus showing that randomized
uniform ACP[@)] circuits cannot be much more powerful than deterministic uniform ACC[@] circuits.
This has been a fundamental open question for a long time.

Classical work of Razborov [37] and Smolensky [40] gave an approach to proving average-case lower
bounds for AC%[@]: a function is average-case hard for ACY[@] if it is average-case hard for Fo-
polynomials of degree at most d = poly logn. Motivated by this, we will try to develop techniques
to address the following question.

Question 13 Find an explicit function f : {0,1}"™ — {0, 1} whose distance from all Fy polynomials
of degree at most d = polylogn is at least (% —n—v),

In coding theoretic terms, this corresponds to finding a received word which is very far from all
codewords of the Reed-Muller code of degree d polynomials. This would have non-trivial impli-
cations for average case lower bounds for AC°[@] circuits, and also for pseudorandom generation
against these circuits.

One possible approach to this problem is via list-decoding algorithms. The approach requires an
error-correcting code C, a codeword ¢ € C, and a good list-decoding algorithm A for C. Now consider
an arbitrary low-degree polynomial p, and consider it as a received word for the error-correcting
code C. If we could analyze the behavior of the list-decoding algorithm A when it is given input
p, and show that the returned list of codewords is does not contain ¢, then this would imply that
¢ is not close to p. Thus we conclude that ¢ is far from low-degree polynomials; which is what we
wanted.

Implementing this program requires the choice of a good error-correcting codes with a list-decoding
algorithm that is simple enough to analyze on specific inputs. I have had some preliminary success
with this approach, in giving an alternate proof of the (previously known) fact that certain code-
words of the dual-BCH code are exponentially uncorrelated with Fo-polynomials of degree at most
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d = 1. I believe that this approach is quite promising, and in particular I think certain codewords
of the dual-BCH code will have the desired property for d as large as poly logn.

I have also executed this strategy on another closely related code, which is based on cubic (and
higher) residuosity in finite fields [27]. In this case I was able to handle polynomials of degree
as large as n¢, but the correlation bound I could show was only polynomially small, and thus it
failed to answer Question 13. Nevertheless, this did show a complexity theoretic lower bound, that
computing cubic residuosity and cube roots over finite fields Fon is hard on average for AC[@]
circuits. I view this as a kind of validation that this approach has the potential to lead to interesting
results.

3.6 Improved randomness extractors

In recent years, error-correcting codes have also been instrumental for progress in the area of
randomness extraction. A few key fundamental questions about randomness extraction remain,
and this research project hopes to make progress on them.

A randomness extractor is a deterministic function which takes in as input some weakly random
variables, and outputs a random variable whose distribution is very close to purely random (i.e.,
uniformly distributed over the co-domain of the function). Such randomness extractors could be
used for generating random bits (for use in algorithms and cryptography) from natural phenomena
exhibiting some randomness. They also have extensive uses in pseudorandomness, cryptography
and complexity theory.

Below we will talk about seeded randomness extractors (which is the most widely-studied kind of
randomness extractor). A seeded randomness extractor takes in two random variables, an n-bit
“weakly-random” variable and an O(logn) bit purely random seed, and is supposed to output an
m-bit long string whose distribution is very close to purely random. How big m can be depends on
the min-entropy of the weakly random input.

Recent work of the PI [15] (see also [44]) gave constructions with the best known dependence of m
on the min-entropy k of the weakly-random input, namely m = k(1 — o(1)). We hope to build on
this and get a completely optimal extractor in this regard:

Question 14 Construct seeded randomness extractors with optimal output length (i.e., m = k —

0(1)).

A related question, which is equally fundamental but has seen much less progress, is to construct
the so-called “linear-degree” extractors:

Question 15 Construct seeded randomness extractors with optimal seed length (i.e., logn+O(1)).

Recently Zuckerman showed [47] how to construct such extractors as long as k = Q(n).

An interesting variant of the above questions is to ask if optimal extractors can be constructed
non-uniformly. A specific approach is to analyze if random linear extractors are optimal (a random
linear extractor is one where the output is random linear function of the weak random source, a
different random linear function being chosen for each possible value of the seed): this would show
the existence of small circuits computing optimal randomness extractors.

Question 16 Are random linear extractors optimal?
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In recent work [21], I and my coauthors showed that random linear codes are optimal list-decodable
codes. Given the strong relationship that list-decodable codes and extractors are known to have,
I believe that the techniques in [21] will give some insight as to how to proceed with the above
question.

3.7 Local testability of very high rate codes and the Unique Games Conjecture

The final research topic of this proposal has to do with very high rate locally testable codes. 1
and my coauthors proved [9] that there exist error-correcting codes encoding k-bit messages which
have very high rate (1 — o(1)), and are locally testable from constantly many errors with ek query
complexity. While being of interest for error-correction, it also turned out to have applications to the
study of the Unique Games Conjecture and the Small Set Expansion hypothesis [2]. In particular,
the codes were used to show that there exist instances on which the Arora-Barak-Steurer algorithm
for Unique Games and Small Set Expansion provably does not perform well.

The following question on the existence of very high rate codes is motivated by these developments:

Question 17 For every e > 0, do there exist locally testable codes encoding k bits into k+ O(log k)
bits, and which can be locally tested from a constant number of errors using ek queries?

I believe that such codes should exist, and it would be very interesting to develop tools to find /construct
such codes. Furthermore, a positive answer would be interesting also because [2] it would give ex-
pander graphs with many large eigenvalues, and would rule out a certain approach to disproving the
Unique Games Conjecture. A negative answer would show that the Arora-Barak-Steurer algorithm
can detect small-set expanders, thus refuting the Small-Set Expansion hypothesis, and this would
be extremely interesting.

Finally, this could be potentially useful as an error-correcting code in practice, where codes of
constant distance are quite commonly used.

4 Educational Plan

A major part of this project involves educational activities. This will include course and course
material development, as well as the mentoring of young researchers, at both the undergraduate
level and the graduate level.

Being part of both a Computer Science and a Mathematics department, I have a unique opportunity
to teach and advise students from both these departments. This is particularly relevant for my
research program since its scope includes a broad range of topics from these areas.

4.1 Course Development

I am planning to develop two new courses: one specialized one at the graduate level focusing on
the areas studied by this proposal, and another general one at the undergraduate level emphasizing
the interconnections and symbiosis between computer science and mathematics. Apart from these
courses, I also will be regularly teaching courses in discrete mathematics and computer science at
all levels.
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I view teaching as one of the privileges of being at an academic institution, and I take it very
seriously (while also enjoying it very much). In the 2011-2012 year, I taught 3 courses (at various
levels). Overall I believe the students enjoyed and got a lot out of these courses (my teaching
evaluation scores were 4.83, 4.78 and 4.43, on a scale of 0 to 5).

I will now describe the courses that I plan to develop.

Course — Error-Correcting Codes in Algorithms and Complexity Theory: In Spring
2013, I am going to teach a new course on error-correcting codes and their applications across
theoretical computer science. This will be aimed at theoretically inclined graduated students. It
will cover both basic results and more advanced research-level material. The main thrust will be to
illustrate how the body of ideas and techniques coming from the theory of error-correcting codes
forms an integral part of many modern algorithms and in our present understanding of complexity
theory and pseudorandomness.

In addition to the fundamentals of error-correcting codes, I plan to discuss many applications such
as hashing, interactive proofs, PCPs, belief propagation, randomness extractors, hardness amplifi-
cation, data structures and secure multiparty computation. I will also discuss topics at the forefront
of modern research, including many of the topics which will be studied in the research component
of the proposal. At a higher level level, I believe that such a course would equip students with (1)
the ability to use combinatorial and algebraic tools to design discrete combinatorial structures with
interesting properties, and more importantly (2) the ability to design solutions to algorithmic and
complexity theoretic problems by using such tailor-made discrete combinatorial structures.

I plan to develop lecture materials, make them publicly available, and reuse them and polish them
in future incarnations of the course.

Course — The Basic Mathematics of Theoretical Computer Science: I am planning
to develop a new undergraduate course called “The Basic Mathematics of Theoretical Computer
Science”, generally aimed at junior/senior undergraduate students in computer science and math-
ematics.

The main goal of this course is to show students in both computer science and mathematics some
of the beautiful results of theoretical computer science which make ingenious use of simple tools
from mathematics. In particular, I will demonstrate how easily accessible and well motivated
the mathematical questions studied in theoretical computer science are. Underlying every clever
algorithm there is a solid mathematical theorem; and the search for nontrivial algorithms motivates
the search for interesting theorems. The main part of this course will be to give many, many
instances of this phenomenon (for example, the success story of random walks as a tool in algorithm
design, and the mathematics behind it).

I believe that the more practice-oriented students will get excited by the kinds of fundamental
computational problems that can get solved using, for example, elementary linear algebra and
probability, that were hitherto dry, formal subjects for them. I also believe that the more theory-
oriented students will get excited by the kinds of mathematical problems and techniques whose
study arises from natural and well-motivated computer science problems.

One consequence that I hope will come from this course is to have students understand that
theoretical computer science is an area where CS and mathematics can interact well and make
each other more exciting. I also hope to encourage more interaction between students of computer
science and mathematics through this course.

I plan to write lecture notes for this course and put them up on the internet for the general public
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to read. I feel that there is not much expository material on this theme, and I hope to partially
remedy this.

4.2 Mentoring

This project will involve the mentoring of graduate students in their Ph.D. research, and also some
advanced undergraduate students working on their theses.

My approach to mentoring graduate students is to initially give them my own problems that I
think are approachable, and to then encourage them to come out with their ideas and directions
for tackling the problems. For more senior graduate students, my philosophy is to inculcate in
them a few basic principles, such as appreciation for good questions and the art of formulating
them, and then to encourage them to read and discuss papers in areas which I feel have a lot of
research potential. My role will be as much that of a sounding board as it will be that of an active
collaborator.

The topic of this proposal involves problems of widely varying depths and and will be able to engage
graduate students at various stages of their career.

The proposed research program also has a lot of scope for involving undergraduates in various
more approachable research projects. This could range from the more practice-oriented implemen-
tations and deployment of error-correcting schemes for real systems, to theoretical questions such
as exploring the efficiency of various decoding algorithms.

5 Broader Impact

The broader impact of this proposal will be through the research results, dissemination of research
results and materials, as well as outreach activities.

Research: The most direct broad impact emanating from the research of this project would be
through the error-correcting codes and related algorithms developed. This proposal in a large part
deals with error-correcting codes of high-rate, which are precisely the kinds of error-correcting codes
that are used/needed in real-world computer systems. As part of this project, we will pursue the
practical aspects of such error-correcting codes in enabling new kinds of applications that were not
conceivable previously. Furthermore, the applications in complexity theory and pseudorandomness
could be applied to efficient proof systems and pseudorandom objects, which could have broader
impact in cryptography and network design.

Dissemination: The PI, along with the young researchers participating in this project, will further
contribute to the broad dissemination of the research by presenting the results of the research in
conferences, in seminars at academic institutions across the world, and at industrial research labs.
Furthermore, all research papers and course materials developed will be made publicly available
at the PI's website. Finally, the PI will also write surveys and expository material to keep the
advanced research material organized in a coherent fashion where it can be accessible to beginning
young researchers.

Outreach: The PI strongly believes in exposing high-school students and undergraduates to ex-
citing developments in modern research. Such exposure goes a long way in inspiring students to
pursue careers in science, technology and academia. In this spirit, the PI will give introductory
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lectures to various undergraduate organizations and high-schools. The PI will also integrate his
outreach efforts with those of the nearby centers, DIMACS and The Center for Computational
Intractability. The PI will give lectures to high-school students, undergraduates and general audi-
ences through programs organized by these centers, and also participate in organizing such outreach
programs. For example, the PI has given/is scheduled to give expository lectures at the DIMACS
REU program (for undergraduates), the HEROES conference at Rutgers (for high-school students)
and the Computer Science Summer Program organized by Rajiv Gandhi and the CCI (for a wide
variety of students). Through such lectures, and other fora, the PI hopes to instill excitement for
higher education in computer science (and theoretical computer Science in particular) in students.

6 Previous Research Accomplishments

Below I outline some of my significant research results.

Multiplicity Codes: My most significant result was the introduction and development of the
theory of multiplicity codes [31, 28]. Their main feature is that they combine local decodability
with high-rate for the first time, thus raising the very exciting possibility that local-decoding could
be applicable in the real world. Furthermore, the existence of such codes was completely contrary
to widely held intuitions in this area, which strongly suggests that they could be used in other
surprising contexts in complexity theory and pseudorandomness. This work is also the motivation
for many of the aspects of this research proposal.

Coding Theory: In coding theory, I have proved a number of results establishing optimal and near-
optimal results on the local testability, local decodability, list-decodability and local list-decodability
for a number of classical error-correcting codes. These works cover various algebraic codes (Reed-
Solomon codes [6], Reed-Muller codes [9, 11], Hadamard codes [20, 13], dual-BCH codes [30, 29])
as well as their complete opposite, random codes [30, 29, 21]. In these works I have developed a
wide variety of general techniques for working with error-correcting codes in sublinear-time and in
the presence of many errors.

Complexity Theory and Pseudorandomness: In complexity theory and pseudorandomness, I
have focussed on various questions in circuit complexity and explicit constructions of pseudorandom
objects. In [27], I showed that certain elementary finite field operations are hard for the circuit class
AC[@]. This work led to a new kind exponential sum bound, of interest in number theory. In [26],
I proved explicit lower bounds for, and proved a law explaining the behavior of, the logic FO[®] on
random graphs. This work answered a long-standing question in logic, regarding generalizations of
the classical zero-one law for random graphs, to the case of logics with counting quantifiers. In [5],
I constructed the best-known explicit “affine dispersers”: these are two-colorings of Fy which do
not contain any monochromatic subspace of large dimension, improving results of Barak et. al. [1]
and Bourgain [10].
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