






2 Introduction

The discovery of nearly-linear∗ time solvers for linear systems on graph Laplacians [ST04] has motivated

the design of faster algorithms for a growing list of problems that includes generalized lossy flow problems

[SD08], generating random spanning trees [KM09a], optimization problems in Computer Vision [KMT09],

and more recently the max-flow problem [CKM+11]. In more recent developments, solvers for Laplacian

systems reached a near-optimal complexity [KMP10, KMP11] and they were parallelized [BGK+11], facts

that justify even more their characterization as powerful algorithmic primitive [Spi, Ten10].

The near-optimality of Laplacian solvers extends easily to algorithms for the approximate computation

of a few extreme eigenvectors [ST06]. Thus an immediate by-product of Laplacian solvers was the accel-

eration of previously known spectral partitioning algorithms and heuristics. The impact was great on the

relative practical value of several spectral partitioning heuristics (e.g. [TM06]). In algorithms, ‘Spectral

partitioning works’ now in nearly-optimal time for bounded-degree bounded-genus graphs [ST96, Kel04].

In the general case, the Laplacian (eigen)-solver provides a proof that non-trivial (but rather weak) guaran-

tees for the sparsest cut problem are indeed possible in nearly-linear time, via the Cheeger inequality (for

example see [Mih89, Chu97]).

However, despite the arguably fundamental nature of eigenvectors, the availability of fast eigensolvers

has not so far led to other algorithmic improvements. In particular, the research on spectral partitioning

seems to have stagnated [GM98], when several other approaches have produced various trade-offs between

running time and polylogarithmic approximation [LR99, ARV04, KRV06, She09, Mąd10]. However, the

design of a nearly-linear time algorithm with a polylogarithmic approximation ratio remains an open prob-

lem. Spectral methods appear to be a natural candidate approach, but it is clear that a major advance in

their understanding is required. Is such an advance even possible?

The affirmative answer will come from the proposed extension of spectral graph theory to a spectral

theory for cut structures, defined as sets of graphs with approximately prescribed cuts. This conceptual

leap leads naturally to a notion of spectral modification which suggests the transformation of the input

graph A to a graph B with similar cuts, but with the additional property that spectral partitioning works well

for it. In fact, graph B should in some sense be a spectral maximizer; its eigenvalues must be as high as

possible. Thus, in contrast to the spectral sparsification problem [ST04, SS08, BSS09] which strives to

preserve the spectrum of a graph, the spectral maximization problem tries to alter the spectrum as much

as possible while maintaining the cuts. The concept of spectral modification and the proof that every cut-

structure has a ‘good’ spectral maximizer will draw from connections between spectral graph theory and the

Räcke’s hierarchical graph decompositions for oblivious routing [Räc02, BKR03].

The existence of a spectral maximizer for a cut structure will induce a natural measure of spectral

distance within a given cut structure. It will be shown that spectral distance is a notion with significant

descriptive value. For instance, it will be shown that on fixed graphs the Cheeger gap is a function of the

spectral distance, not only for the sparsest cut but —via generalized Cheeger inequalities– to cuts general-

ized on pairs of graphs, including the s-t cut and the uniform sparsest cut. This realization will enable the

development of partitioning algorithms that make use of prior information about the location of the cut, im-

proving –for example– medical imaging. In later stages, the project will examine the the descriptive quality

of the spectral distance for the performance of algorithms and other phenomena in interesting classes of

graphs. Examples include routing algorithms, navigability, or information spreading in social or biological

networks.

The project will strive to find algorithms that –besides being asymptotically near-optimal– are elegant

and practical. The key for efficiency in many algorithms will be SDD solvers, which will be developed

further. The project will disseminate the results of the research in the form of publications and software.

∗We will be using the term ’near-linear in n’ to mean O(n logc n) for some constant c.
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3 Proposed Research

In this Section we explain the proposed research problems and outline potential methods for solving them.

Statements whose proofs are known to the PI and his collaborators will be called Claims.

3.1 Definitions and notation

We start with a review of some basic background material and definitions. Given a weighted graph A =
(V,E,w) the Laplacian LA of A is the matrix defined by:

• L(i, j) = L( j, i) =−wi, j

• L(i, i) = ∑ j �=i wi, j

For any vector x, we have

xT Lx = ∑
i j

wi, j(xi − x j)
2.

For S ⊂V we let capA(S,V −S) denote the total weight crossing the cut between S and V −S that is

capA(S,V −S) = ∑
i∈S, j∈V−S

wi, j

Let yS denote the 0-1 vector indicating S, i.e. yS(i) = 1 if i ∈ S and yS(i) = 0 otherwise. Then it can be seen

that

capA(S,V −S) = yT
S LAyS. (1)

Given two Laplacians LA and LB, a generalized eigenvalue λ and the corresponding generalized eigenvector

x are a pair that satisfy

LAx = λLBx.

A Laplacian pair (LA,LB) has n−1 positive generalized eigenvalues corresponding to eigenvectors different

than the constant vector. Among these n− 1 generalized eigenvalues let λmin(LA,LB),λmax(LA,LB) denote

the minimum and maximum one respectively. We have

λmin(LA,LB) = min
x

xT LAx

xT LBx
and λmax(LA,LB) = max

x

xT LAx

xT LBx

The condition number κ(LA,LB) is defined by

κ(LA,LB) = λmax(LA,LB)/λmin(LA,LB)

Intuitively, the condition number is a measure of how similar the two graphs are, in a spectral sense. We say

that B dominates A when λmin(LB,LA)≥ 1 and we denote this event by LA � LB.

3.2 Spectral Partitioning: Cut Problems as Discrete Generalized Eigenvalues

A main focus of this project will be the following simultaneous cut problem:

The generalized sparsest cut problem. Given two graphs A and B let

φ(A,B) = min
S⊆V

capA(S,V −S)

capB(S,V −S)
.
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We call the set S ⊆ V that achieves φ(A,B) the generalized sparsest cut for the pair (A,B). Given a set

S´ ⊆V such that
capA(S´,V −S´)

capB(S´,V −S´)
= ρφ(A,B)

we say that S´ is a ρ-approximation to the generalized sparsest cut.

We now discuss how three well known problems are instantiations of the generalized sparsest cut problem.

The uniform sparsest cut problem. Let K be the complete graph with uniform weights equal to 1/n. Then

φ(A,K) = min
S⊆V

capA(S,V −S)

|S||V −S|/n

which is within a factor of 2 of

φ̃(A,K) = min
S⊆V

capA(S,V −S)

min{|S|, |V −S|}
.

The sparsest cut problem. Let vol(S) denote the total weight incident to S ⊆ V . Let P be a weighted

complete graph, with the weight w´i, j of edge (i, j) given by the product

w´i, j = vol(i)vol( j)/vol(V ).

Then it can be shown that

φ(A,P) = min
S⊆V

capA(S,V −S)

vol(S)vol(V −S)/vol(V )

which is within a factor of 2 of

φ̃(A,P) = min
S⊆V

capA(S,V −S)

min{vol(S),vol(V −S)}
.

Both φ(A,P) and φ̃(A,P) are often referred to as the conductance of the graph A. We will denote the

conductance of A by φ(A).

The minimum s-t cut problem. Let Est be the graph consisting of only one edge between the nodes s and

t. Then φ(A,Est) is the value of the min s-t cut in A, and the set S ⊆ V that achieves φ(A,Est) provides the

actual min s-t cut.

It is clear that given two graphs A and B on n nodes we have

φ(A,B) = min
x∈{0,1}n

xT LAx

xT LBx
.

In particular, φ(A,B) can be considered as a discrete generalized eigenvalue of the pair (LA,LB) as it is

evident that relaxing the definition of φ(A,B) over the real numbers yields the definition of λmin(LA,LB).

Spectral partitioning attempts to solve the discrete generalized eigenvalue problem by computing approx-

imations to the actual generalized eigenvalue and eigenvectors, and ‘rounding’ the eigenvector to a discrete

vector indicating a cut which is hopefully a good approximation to the generalized sparsest cut. The spec-

tral partitioning method has been used mostly for the sparsest cut problem. The generalized eigenproblem

(A,Est) also appears implicitly in the recent max-flow and s-t cut algorithms of [CKM+11] where it is

viewed as an equivalent linear system. The linear systems produces electrical flows that are crude approxi-

mations of the combinatorial flows. As it will be explained in Section 3.7, the (in some sense) dual view of

the electrical flow as an eigenvector yields additional insights.
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3.3 Cut Structures and Spectral Maximization

For a given graph A = (V,E,w) with |V |= n, let the cut structure CA be the set of graphs that have the same

cuts with A, within some factor c. Concretely, for some number c ≥ 1 let

CA(c) = {B : φ(B,A)≥ 1 and φ(A,B)≥ 1/c}.

We say that a graph B ∈ CA is a d-spectral maximizer for CA(c) if for all A´ ∈ CA(c), we have

LA´ � dLB

In other words, B spectrally dominates within a d factor all graphs in CA(c).

A basic question we will consider in this project is the following:

Question: Are there absolute constants a,b such that for all graphs A there is a graph B ∈ CA(loga n) which

is a logb n-spectral maximizer for CA(loga n)?

3.4 Räcke Decompositions, Spectral Maximization and Spectral Distance

A laminar decomposition tree T = (VT ,ET ,wT ) of a graph A = (V,E,w) is defined by the following proper-

ties:

• Each node v of T corresponds to a set Sv ⊆V .

• The root of T corresponds to V and the n leaves to the nodes in V .

• If u1, . . . ,uk are the children of v in T then Sv =
⋃k

j=1 Su j
.

• The weight of the edge from u ∈VT to its parent in T is equal to capA(Su,V −Su).

Räcke [Räc02, BKR03, Räc08] introduced a special kind of laminar (or hierarchical) decompositions

with several properties that lend to the design of a nearly optimal oblivious routing strategy. For example,

for the square grid graph, Räcke’s tree is the natural quadtree, with its edges weighted by the values of the

underlying cuts.

Let T be the Räcke tree of A, and LT be its Laplacian, ordered so that the non-leaf nodes appear in

coordinates greater than n. Let b be an n-dimensional vector orthogonal to the constant vector. Then there

are vectors xb and yb such that

LT

(
xb

yb

)
=

(
b

0

)

Gremban [Gre96] showed that there is a (dense) graph B[T ] such that for all b

LB[T ]xb = b.

A key to the graph modification approach will be the following.

Claim. If T is Räcke’s tree for A then B[T ] is a logb n-spectral maximizer for CA(loga n), for some fixed

integers a,b independent from A. Hence the answer to the question posed in section 3.3 is affirmative.

It is important to observe that -because of the slack in the definitions- a spectral maximizer is not unique.

In particular the existence of a spectral maximizer for every graph also implies the existence of a sparse

spectral maximizer [BSS09].

In what follows we will drop the functions loga n and logb n from the notation. By definition, a maximizer

M nearly-dominates all graphs in CA, including A itself. The eigenvalue λmax(M,A) = 1/λmin(A,M) is a

natural measure of the spectral distance of A from M. When λmax(M,A) is close to 1 then A is itself a

spectral maximizer.
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3.5 Generalized Cheeger Inequalities

Let us focus on the conductance φ = φ(A) of a graph A. The guarantees for spectral partitioning follow from

the Cheeger inequality (see for example [Chu97]), which relates φ with λmin(LA,LP), where P is the matrix

defined in Section 3.2 †:

λmin(LA,LP)≤ φ ≤ 2
√

λmin(LA,LP).

The proof of the Cheeger inequality actually rounds the generalized eigenvector to a 0-1 vector which

achieves a cut of sparsity at most φ´ ≤ 2
√

λmin(LA,LP). However the actual conductance may be as small

as λmin(LA,LP). Hence the cut returned by the rounding is not an f (n)-approximation for the sparsest cut,

for any non-trivial function of n.

The Cheeger inequality assumes a somewhat different form in the case of the uniform sparsest cut. In

particular, in the case the graph A is uniform, and the maximum degree is d, the inequality becomes

λmin(LA,LK)≤ φ(A,K)≤
√

2dλmin(LA,LK). (2)

In this case, the guarantee is weaker for graphs which contain high degree nodes.

The Cheeger inequality leads naturally to the definition of the Cheeger gap of a pair (A,B) as the ratio

φ(A,B)/λmin(LA,LB) There is no explicitly known bound on the gap for the pair (A,Est), let alone for the

generalized sparsest cut (A,B). It will be proven that the Cheeger gap of the pair (A,B) is (within a constant)

at most 1/φ(A), independently from B. More concretely, the following will be shown.

Claim A. For any pair of graphs A and B, and some fixed constant C, we have

Cφ(A,B)φ(A)≤ λmin(LA,LB)≤ φ(A,B) (3)

It can be seen immediately that the inequality recovers the usual Cheeger inequality when applied to the

sparsest cut problem. It can also be seen than –when specialized to the uniform problem– inequality 3 is

more natural, and in many cases stronger than inequality 2. We will discuss the consequences on the s-t cut

problem in Section 3.7.

The conductance can be a very pessimistic upper bound for the Cheeger gap. A central claim of this

proposal will be that the quality of spectral partitioning is a function of the spectral distance, quantified by

the following inequality.

Claim B. Let A be a graph and M be a spectral maximizer for the set of graphs CA as defined in Section 3.3.

Then for any graph B, and some constant c, we have

φ(A,B)
λmin(LA,LM)

logc n
≤ λmin(LA,LB)≤ φ(A,B).

In other words, the Cheeger gap of (A,B) is upper bounded (up to logc n) by the spectral distance of A from

its maximizer, again independently from B.

3.6 Spectral Modification

The Cheeger inequality in Claim B of the previous Section suggests a spectral modification approach.

Given a graph A, find a spectral modifier graph B∈ CA such that B is spectrally close to a spectral maximizer

M for CA. Then apply spectral partitioning on B. Observe that since B is in CA, it has (up to poly-log

†Most proofs of the Cheeger inequality use the pair (LA,D) instead of (LA,LP), where D is the diagonal of LA. Using (LA,LP)
doesn’t affect the inequality.
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factors) the same cuts with A, and at the same time spectral partitioning provides stronger guarantees for B

via Claim B. These stronger guarantees can then be translated back to A with only a polylogarithmic loss.

The major goal of this approach is to design a nearly-linear time algorithm that returns a spectral modifier B

such that

λmin(LB,LM)> f (n)

where f (n) is a non-trivial function of n only. This will be a major step forward for spectral partitioning and

it may eventually lead to a nearly-linear time algorithm with poly-logarithmic approximation ratio.

We plan to explore the following general framework for constructing the spectral modifier B.

1. Compute a graph A´ ∈ CA with O(n logn) edges, using for example [SS08].

2. Identify in A´ a number of logc n weighted spanning trees Ti

3. For each tree Ti find its spectral maximizer Ri ∈ CTi
.

4. Let B be the sum of A´ and the Ri’s in the sense that LB = LA´ +∑ j LR j
.

This general framework guarantees that B will be in CA and that B
A. In fact a variant of this framework

returns polylogarithmic guarantees for the counterexamples in [GM98].

Comment: Mądry [Mąd10] recently proposed a framework that generates partitioning algorithms whose

running time is (roughly) O(m1+1/ε) at the expense of an O((logn)1/ε) factor in the approximation ratio.

At a high level, his algorithm generates a decomposition of the given graph into a set of graphs (called

j-trees), solves the partitioning problem on a small randomly selected subset of the j-trees, and extracts

an approximation for the problem on the input graph. The computation of the trees Ti in step 3 of our

framework is similar only superficially to Mądry’s graph decomposition. Our framework doesn’t approach

the problem by reducing in to smaller or ‘easier’ graphs, as this imposes very stringent requirements on

the decomposition. Rather, it is based on the plausible conjecture that one can modify the spectrum of the

graph by operating on about O(logn) trees since this number is enough to get a cut-preserving sparsifier

[FHHP11]. In particular, the ‘re-wiring’ of the graph that effectively takes place in step 4 doesn’t have an

analogue in Mądry’s approach and it may be inherently more powerful.

3.7 The descriptive power of spectral distance

The proposal will show that spectral distance is a measure of fundamental nature in understanding the

performance of known algorithms on families of graphs. It will also examine the design of algorithms

whose running time is parameterized by the spectral distance. Particular instantiations of this reasoning

include the following.

• Spectral partitioning: The discussion of Section 3.5 already implies that spectral partitioning works

better than previously thought for certain classes of graphs. For example, we conjecture that it works better

for dense graphs:

Conjecture. Let A be a uniform graph with average degree d and B any graph. We have

φ(A,B)
n

d logc n
≤ λmin(LA,LB)≤ φ(A,B).

• Approximate max-flow and s-t min cuts: The recent approximate max-flow algorithm [CKM+11], is

based on computing electrical flows which are used as (crude) approximation of combinatorial flows. The

quality in the approximation determines the number of electrical flows that have to be computed and con-

trols directly the running time of the algorithm. An electrical flow can also be viewed as the eigenvector
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of the generalized system (A,Est). The inequalities in Section 3.5 imply that the approximate min s-t cuts

computed via a rounding of the eigenvector can be good approximations of the exact min s-t cut if the spec-

tral distance is small. This suggests the possibility that the quality of the electrical flow as an approximate

combinatorial is a function of the spectral distance which may lead to an improved running time on graphs

with smaller spectral distance. Such improved bounds already exist for other approaches [LR99].

• Faster Computation of Räcke Decompositions. Given the relationship between maximizers and Räcke

Decompositions one can consider the following problem: Design an algorithm for computing a Räcke

decomposition for A, provided that A is a near-maximizer for the set CA. The algorithm should be faster than

known algorithms, at the expense of some poly-log factors for the parameters capturing the quality of the

decomposition.

It is clear that if there is a positive answer to the promise problem, then combining it with the spectral

modification approach will yield a faster algorithm for computing good Räcke decompositions for all graphs.

• Information-passing in networks. In the longer term the project will investigate the descriptive power of

spectral distance in contexts including (i) the congestion-efficiency of simple routing protocols, (ii) rumour

spreading mechanisms [CLP10, CHHKM11], and (iii) network navigability [Kle00, CFL08].

3.8 The ground work: Practical SDD Solvers

The proposal aims to design algorithms that are not only asymptotically nearly-optimal but also elegant and

practical. Practical SDD linear system solvers are necessary to attain this objective. The currently fastest

SDD solver [KMP11] is believed by many to be asymptotically optimal, up to loglogn factors. However,

it appears possible that SDD solvers based on newer ideas can come closer to practice. From a theoretical

point of view this requires new ideas that will solve certain carefully posed problems:

• Practical spectral sparsification. The solvers for Laplacian systems, or more generally for Symmet-

ric Diagonally Dominant (SDD) systems are based on spectral sparsification, which given a graph A

seeks to ‘modify’ it to a sparser graph B, such that the condition number κ(LA,LB) is small. In particu-

lar, the Õ(m logn) time algorithm of [KMP11] is based on the notion of incremental sparsification which

given the graph A returns a graph B with n+m/ log2 n edges such that κ(LA,LB) < log4 n. Even for mildly

dense graphs, incremental sparsification is quite weak comparing to the full sparsification of Spielman and

Srivastava [SS08] who proved that for every graph A there is a graph B with O(n logn) edges such that

κ(LA,LB)< 2. Furthermore, B can be computed with O(logn) calls to a Laplacian solver.

Our experience with implementations of SDD solvers suggests that a full sparsification routine would be

very useful in practice. It remains an open problem whether a full sparsifier with O(n logn) edges can be

computed via a combinatorial sparsification algorithm without resorting to a Laplacian solver. We propose

then to study the following problem.

Problem. Find an algorithm that runs in time O(m+n logc n) which given a graph A returns a graph B with

O(n logn) edges, such that κ(LA,LB)< O(log2 n).

A candidate approach could be based on an interesting recent development [FHHP11], summarized in the

following proposition.

Proposition. There is an algorithm that runs in time O(m+n logc n) which given a graph A returns B with

O(n logn) edges such that 1/2 < φ(A,B)φ(B,A)< 2.

The above proposition claims the existence of a cut-preserving sparsifier which has the running time

properties we seek, but it only guarantees a small discrete condition number. We plan to address the problem

by proving a variant of the following conjecture.

Conjecture. There is an algorithm that runs in time O(m+n log4 n) which given a graph A, it decomposes
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the vertices V of a graph A into vertex-disjoint clusters Vi such that: (i) Only a constant fraction of the edges

of A connect different clusters, (ii) For all i, running [FHHP11] on the subgraph A[Vi] induced by Vi returns

a graph Bi such that κ(LA[Vi],LBi
)< O(log2 n).

• Bypassing low-stretch tree computations. A major obstacle in the practicality of the [KMP11] solver is

the complicate nature of the algorithm for computing a low-stretch tree [AKPW95, EEST05, ABN08]. For

the special case of spectral partitioning, the SDD system doesn’t have to be solved for a fixed a graph A, but

for some graph in the cut structure CA. We will show the following.

Claim. There is a graph B in CA(4) such that, in effect, a spanning tree of B with average stretch logn (no

hidden constants) can be found in linear time.

• Parallel SDD solvers. The recent parallel algorithm in [BGK+11] runs in time nearly O(n1/3). Perhaps

the most significant open question concerning SDD solvers is the design of a parallel algorithm which does

O(m logn) of O(m log2 n) work, and runs in polylogarithmic parallel time. This question seems to be

outside the grasp of current methods and previous work shows that it will most probably require a deeper

understanding of generalized eigenvalues and eigenvectors [Kou07].

3.9 Broader consequences in Spectral Graph Theory

This proposal will bring us closer to major advances in algorithms, such as the design of nearly-linear time

algorithms for approximate max-flow. But beyond the realm of very efficient algorithms, the novel notions of

this proposal will be fertile ground for research that will introduce new techniques and may uncover beautiful

theorems. Similar to the notion of spectral sparsification that led to the discovery of twice-Ramanujan graphs

[BSS09], the notion of spectral modification may very well lead to breakthroughs of similar magnitude. A

wealth of interesting questions can be posed. There is however one that stands out and has the potential for

surprising consequences:

What are the theoretical limits of spectral maximization?

In more technical terms, what is the smallest function θ(n) such that every cut structure CA(c) contains a

θ(n)-maximizer, for some constant c? And how fast can a u(n)-maximizer can be computed as u(n) varies?

We are indeed optimistic that the proposed research activities will open a new cycle of innovations in the

foundations of algorithms and in theoretical computer science more generally.
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5.2 Opportunities

The department of Computer Science at *********** offers a number of unique opportunities.

1. The small faculty to student ratio helps bridging the gap between the faculty and the students. The

friendliness of the environment enables a closer monitoring of each student individually. This instills

a higher sense of responsibility in the students.

2. The department plans to hire 5 new faculty members in the next 5 years. Recruiting faculty with

expertise complementary to that of the current faculty will improve in several ways the quality of the

program, and increase the availability of course offerings that will motivate the students to increase

their effort level. The new hires will also facilitate undertaking a collective department-wise effort to

gradually increase the intensity of the program.

3. The department has an established mentality for undergraduate research. Most students partici-

pate small research/development projects for credit, and many participate in NSF-sponsored REUs

(Research Experiences for Undergraduates). In practice this individualizes the learning process and

offers an attractive alternative to the traditional lecture/homework/exam approach.

4. The department is gradually assuming a more active role in the Math-CS graduate program and is

examining its participation in at least one additional interdisciplinary MSc program. These are the

first steps to increase the popularization of the value of computational thinking within the educational

system of Puerto Rico.

5.3 Educational plan component I: Departmental activities

During the academic year 2011-2012, the PI will begin serving the department as a coordinator of under-

graduate research and also as a member of the graduate CS-Math committee. The PI will aim for:

1. Synchronization of the undergraduate research with current and future trends of Computer Science

research, increasing the educational effectiveness of the program and improving the chances of the

best students for admission in strong graduate programs. In order to achieve this goal the PI will

consult with experts in various areas of Computer Science, using his professional and social network.

2. A tighter integration of the undergraduate and graduate programs. In particular the PI will advocate

the introduction of graduate courses with a strong algorithmic component, increasing the appreciation

of faculty and students for Theoretical Computer Science. This goal will be supported by inviting

selected researchers in Theory to visit the department; their presence will lend credibility to the PI’s

effort.

The PI also expects to play a leading role in the recruitment process, which will be crucial for the near

and mid-term future of Computer Science in Puerto Rico. Besides the usual advertisements the faculty

search will include direct invitations for interviews.

The project will support the departmental activities of the PI with academic year salary. It will also

support invitations for visits of distinguished researchers. Most importantly, the prestige of a CAREER

award, will increase the credibility and visibility of the department and will exercise a strongly positive

influence in the outcome of the faculty search.
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